Antibacterial Lecithin/Chitosan Nanoparticles for the Sustained Release of Ciprofloxacin to Treat Ocular Bacterial Infections

Ocular drug-delivery is one of the most challenging areas owing to nature of ocular tissues. Various nanoformulations have been designed and investigated for drug-delivery to achieve high drug bioavailability. The major focus of these preparations available in market is to utilize nanomaterial as dr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry, an Asian journal an Asian journal, 2024-12, p.e202400933
Hauptverfasser: Rasool, Nahida, Thakur, Yashika, Singh, Yashveer
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Ocular drug-delivery is one of the most challenging areas owing to nature of ocular tissues. Various nanoformulations have been designed and investigated for drug-delivery to achieve high drug bioavailability. The major focus of these preparations available in market is to utilize nanomaterial as drug-carrier only, with less focus on developing functional-nanomaterials, which is a key knowledge gap in the field. To address this, we developed a nanoparticulate system from bioactive-polymers, having intrinsic antimicrobial and mucoadhesiveness, loaded with ciprofloxacin (cipro) to treat ocular bacterial infections. Cipro-loaded lecithin/chitosan nanoparticles were prepared and characterized for their physiochemical properties. They exhibited good drug loading efficiency and showed sustained drug-release for 72 h, with slow release for first 4 h followed by a burst release in phosphate buffered saline and simulated tear fluid. Cipro-loaded nanoparticles were assessed for their antibacterial potential against Staphylococcus aureus (96 %) and Pseudomonas aeruginosa (72 %) using optical density, disc-diffusion method, live-dead assay, and demonstrated promising antibacterial properties. The drug-loaded nanoparticles showed good cytocompatibility (~90 %) towards murine fibroblasts and rabbit corneal cells. Being amphiphilic in nature, the nanoparticles exhibited mucoadhesiveness, hemocompatibility (
ISSN:1861-4728
1861-471X
1861-471X
DOI:10.1002/asia.202400933