Tinospora crispa (L.) Hook.f. & Thomson vines ameliorates hyperuricemia by inhibiting synthesis and promoting excretion of uric acid through targeting NLRP3/caspase-1/IL-1β pathway

Tinospora crispa (L.) Hook.f. & Thomson (T. crispa), is widely distributed in Xishuangbanna, Yunnan Province, China. According to the “Selected Medicinal Plants of Yunnan”, T. crispa is recognized for its versatile medicinal properties, including promoting diuresis, reducing swelling, relieving...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of ethnopharmacology 2024-12, Vol.340, p.119271, Article 119271
Hauptverfasser: Chen, Nuoshi, Liu, Dandan, He, Zelin, Zhang, Yuping, Lai, Yongzhi, Wang, Shaoran, He, Fei, Jie, Ligang, Du, Hongyan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Tinospora crispa (L.) Hook.f. & Thomson (T. crispa), is widely distributed in Xishuangbanna, Yunnan Province, China. According to the “Selected Medicinal Plants of Yunnan”, T. crispa is recognized for its versatile medicinal properties, including promoting diuresis, reducing swelling, relieving pain, relaxing tendons, and promoting blood circulation, suggesting that their extracts can be used to exhibit a range of beneficial activities such as immune regulation, blood sugar reduction, and anti-inflammatory effects. In the Dai ethnic areas of China, T. crispa is commonly employed in the herbal prescription of treatment of hyperuricemia and gouty arthritis. However, further study is needed to enucleate the potential pharmacological mechanism of T. crispa. This study aimed to investigate the effects and mechanisms of T. crispa vines extract (TC) in alleviating hyperuricemia. A hyperuricemia mouse model was established through intraperitoneal injection of potassium oxonate to evaluate the hypouricemic effects of TC. To explore the underlying mechanisms of TC, network pharmacology analysis was employed. Additionally, a series of experimental approaches—including serum biomarker assays, ELISA, reverse transcription-quantitative PCR (RT-qPCR), histopathological staining, metabolomics analysis and western blotting—were performed to assess the capability of TC in modulating uric acid levels. TC treatment markedly lowered serum biomarkers by inhibiting xanthine oxidase (XOD) activity and modulating the expression of urate transporters, while also alleviating renal injury in hyperuricemic mice. Through bioinformatics and network pharmacology analyses, the NOD-like receptor signaling pathway was identified as a critical mechanism underlying the therapeutic impact of TC. Metabolomics analysis uncovered 14 differential metabolites and seven metabolic pathways linked to the anti-hyperuricemic action of TC. Further experimental validation confirmed that TC attenuated renal inflammation and suppressed activation of the NLRP3/caspase-1/IL-1β signaling pathway. Our findings demonstrate that TC exerts a significant uric acid-lowering effect in hyperuricemic mice. This therapeutic effect can be attributed to the suppression of uric acid synthesis and the modulation of urate transporters. Moreover, the inhibition of the NLRP3/caspase-1/IL-1βsignaling pathway further contributes to the regulatory action of TC on uric acid homeostasis. [Display omitted] •The first report on the p
ISSN:0378-8741
1872-7573
1872-7573
DOI:10.1016/j.jep.2024.119271