High-stable bimetallic AgCu nanoalloys with core-shell structures for sustainable antibacterial and biofouling mitigation in nanofiltration
•Bimetallic AgCuNPs with core-shell structures were in situ formed on membranes.•AgCuNPs controlled the release of biocidal ions and improved membrane stability.•The membranes exhibited enhanced antibacterial and antibiofouling properties.•ROS were formed at the membrane surface and dominated the bi...
Gespeichert in:
Veröffentlicht in: | Water research (Oxford) 2025-03, Vol.271, p.122986, Article 122986 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | •Bimetallic AgCuNPs with core-shell structures were in situ formed on membranes.•AgCuNPs controlled the release of biocidal ions and improved membrane stability.•The membranes exhibited enhanced antibacterial and antibiofouling properties.•ROS were formed at the membrane surface and dominated the biocidal capability.
Nanofiltration (NF) is crucial for advancing water purification and wastewater reuse technologies. Incorporating biocidal nanoparticles (NPs) such as AgNPs and CuNPs is promising for developing antibacterial and antibiofouling NF membranes, while their application is limited by NPs aggregation, high cost, and severe ion release. In this study, we developed novel NF membranes by integrating bimetallic AgCu nanoalloys via an in-situ reduction and coordination method facilitated by a polydopamine/polyethyleneimine (PDA/PEI) intermediate layer. The sequential deposition of Cu2+ onto nascent AgNPs formed uniform AgCuNPs with a unique core-shell structure. The Cu shell layer can shield the release of Ag+ from the Ag core and chelate with the PDA/PEI intermediate layer, thus controlling the release of biocidal ions and prolonging the biocidal properties of the membranes. As a result, the AgCuNP-modified membranes exhibited significantly improved membrane water permeability, salt rejection, and performance stability, along with reduced release of biocidal ions in the long-term operation. Notably, the bimetallic AgCuNP-modified membrane displayed superior antibacterial activity and biofouling reversibility compared to the commercial NF and monometallic Ag/Cu-modified membranes, achieving the highest sterilization rate (> 99 %), largest flux recovery rate (93 %), and lowest flux decline rate (16 %) in both static antibacterial and dynamic biofouling processes. The metal-semiconductor heterostructure of the AgCuNPs facilitated the electron transfer from the Ag core to the Cu shell, intensifying the substantial generation of reactive oxygen species (H2O2: 71.6 mmol l-1 m-2, •OH: 43.4 mmol l-1 m-2, and O2•–: 1.3 × 10–4) at the membrane-bacteria interface. The synergistic effects of the unique properties of AgCuNPs including microstructure, atomic composition, charge transfer, and ROS generation significantly enhanced the antibacterial capacity of the AgCuNP-modified membrane. This study presents a facile method for modifying NF membranes with bimetallic AgCuNPs to achieve enhanced antibacterial activity and biofouling reversibility, providing fundamental i |
---|---|
ISSN: | 0043-1354 1879-2448 1879-2448 |
DOI: | 10.1016/j.watres.2024.122986 |