Metabolic Blockade-Based Genome Mining of Saccharopolyspora erythraea SCSIO 07745: Discovery and Biosynthetic Pathway of Aminoquinolinone Alkaloids Bearing 6/6/5 Tricyclic and 6/6/6/5 Tetracyclic Scaffolds
Metabolic blockade-based genome mining of the marine sediment-derived Saccharopolyspora erythraea SCSIO 07745 led to the discovery of 11 novel aminoquinolinone alkaloids, oxazoquinolinones A–J (1–10), characterized by an oxazolidone[3,2-α]quinoline-5,8-dione scaffold, and oxazoquinolinone K (11),...
Gespeichert in:
Veröffentlicht in: | Organic letters 2025-01, Vol.27 (1), p.476-481 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Metabolic blockade-based genome mining of the marine sediment-derived Saccharopolyspora erythraea SCSIO 07745 led to the discovery of 11 novel aminoquinolinone alkaloids, oxazoquinolinones A–J (1–10), characterized by an oxazolidone[3,2-α]quinoline-5,8-dione scaffold, and oxazoquinolinone K (11), featuring an unprecedented fused 6/6/6/5 tetracyclic core ring system. Additionally, 5 new biosynthetic intermediates or shunt products (12–16) and a known metabolite sannanine (17) were identified. Their structures were elucidated by extensive spectroscopic analyses and a comparison of electronic circular dichroism and single-crystal X-ray diffraction. On the basis of the functional gene analyses and structures of the intermediates or shunt products, plausible biosynthetic pathways for compounds 1–17 were proposed. Additionally, oxazoquinolinone K (11) obviously inhibited cell invasion of human glioma cell line LN229 cells at 10 μM. |
---|---|
ISSN: | 1523-7060 1523-7052 1523-7052 |
DOI: | 10.1021/acs.orglett.4c04491 |