A fluorescent probe based on pyrazoline with significant Stokes shifts for the detection of Cu2+ ions and its applications
A simple pyrazoline derivative BBD has been synthesized for detecting Cu2+ in EtOH/HEPES (v/v = 1 : 1, pH = 7). The probe has high selectivity for Cu2+ by quenching the fluorescence intensity and was sensitive to pH. When excited at 398 nm, fluorescence is emitted at 520 nm with a Stokes shift of 12...
Gespeichert in:
Veröffentlicht in: | Analytical methods 2024-12 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A simple pyrazoline derivative BBD has been synthesized for detecting Cu2+ in EtOH/HEPES (v/v = 1 : 1, pH = 7). The probe has high selectivity for Cu2+ by quenching the fluorescence intensity and was sensitive to pH. When excited at 398 nm, fluorescence is emitted at 520 nm with a Stokes shift of 122 nm, which is larger than that of other reported pyrazoline skeleton probes. The detection limit (LOD) of the probe for Cu2+ is 0.862 μM which is lower than the value of the WHO limit (31.5 μM) in water. The 2 : 1 binding mode and probable recognition mechanism of the probe with Cu2+ were confirmed by Job's plot, IR, ESI-MS, and TD-DFT analysis. Moreover, the probe has been successfully applied to actual water samples as well as cell and zebrafish imaging.A simple pyrazoline derivative BBD has been synthesized for detecting Cu2+ in EtOH/HEPES (v/v = 1 : 1, pH = 7). The probe has high selectivity for Cu2+ by quenching the fluorescence intensity and was sensitive to pH. When excited at 398 nm, fluorescence is emitted at 520 nm with a Stokes shift of 122 nm, which is larger than that of other reported pyrazoline skeleton probes. The detection limit (LOD) of the probe for Cu2+ is 0.862 μM which is lower than the value of the WHO limit (31.5 μM) in water. The 2 : 1 binding mode and probable recognition mechanism of the probe with Cu2+ were confirmed by Job's plot, IR, ESI-MS, and TD-DFT analysis. Moreover, the probe has been successfully applied to actual water samples as well as cell and zebrafish imaging. |
---|---|
ISSN: | 1759-9679 1759-9679 |
DOI: | 10.1039/d4ay01772b |