Isotopic and molecular analyses of n-alkanes in a temporal study of coastal sediment contributions to organic carbon degradation induced by algal bloom and terrestrial runoff

The priming effect (PE) refers to the enhanced remineralization of recalcitrant organic carbon (OC) driven by the respiration of labile OC, potentially increasing CO2 fluxes from aquatic ecosystems. Patterns of PE induced by marine and terrestrial OC inputs can be explored through sedimentary contri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Science of the total environment 2025-01, Vol.958, p.178071, Article 178071
Hauptverfasser: Mirzaei, Yeganeh, Douglas, Peter M.J., Gélinas, Yves
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The priming effect (PE) refers to the enhanced remineralization of recalcitrant organic carbon (OC) driven by the respiration of labile OC, potentially increasing CO2 fluxes from aquatic ecosystems. Patterns of PE induced by marine and terrestrial OC inputs can be explored through sedimentary contributions to the degraded OC pool. In this study, coastal sediments (δ13Cbulk = −25.26 ± 0.06 ‰, 1.63 ± 0.07 % OC) were spiked with isotopically distinct marine and terrestrial OC sources (Nannochloropis phytoplankton, δ13C = −43.18 ± 0.31 ‰; and C4 corn leaves, δ13C = −13.90 ± 0.09 ‰). Source contributions to respired OC were investigated using n-alkane concentration profiles and stable carbon isotopes (C15-C30) across 30 microcosms. Elevated concentrations of 13C-enriched high molecular weight n-alkanes (e.g., δ13CC29 = −26.3 ± 0.5 ‰) were observed in corn leaf amendments, whereas the phytoplankton spike exhibited a higher abundance of 13C-depleted low molecular weight n-alkanes (e.g., δ13CC17 = −46.8 ± 0.4 ‰). Mixing models indicate the sedimentary OC contribution to the degraded biomarkers, for which an increasing trend suggests a PE. Phytoplankton-amended microcosms showed a sediment OC contribution of 10.3 ± 1.5 % to the degradation of the C17 n-alkane. The corn leaf spike resulted in consistently higher contributions of 30.4 ± 3.6 % for the lost C29 n-alkane, documenting the effect of carbohydrate rich organic matter on sedimentary OC remineralization. A synergistic interaction emerged when sediments received a mix of marine and terrestrial OC, exhibiting contributions to n-alkane loss of 48.3 ± 5.3 % for C17, and 35.2 ± 5.2 % for C29. Following biochemical fractionation that leads to the selective breakdown of certain biochemical structures, our data indicate greater sedimentary degradation during induced terrestrial runoff compared to an algal bloom, providing a quantitative measure of OC remineralization. Synopsis: Hydrocarbon biomarkers and stable isotopes show that the degradation of refractory organic carbon in marine sediments is affected by inputs of fresh terrestrial and marine organic matter. [Display omitted] •Quantified priming effect in sediments using compound-specific isotope analysis.•Fresh organic carbon accelerates degradation of recalcitrant sedimentary organic matter.•Distinct degradation patterns of n-alkanes reveal source-dependent priming effects.•Isotopic data differentiate contributions from terrestrial and marine-derived organic ca
ISSN:0048-9697
1879-1026
1879-1026
DOI:10.1016/j.scitotenv.2024.178071