Unravelling the potential of natural chelating agents in the control of Staphylococcus aureus and Pseudomonas aeruginosa biofilms

Iron is essential for the formation, maturation and dispersal of bacterial biofilms, playing a crucial role in the physiological and metabolic functions of bacteria as well as in the regulation of virulence. Limited availability of iron can impair the formation of robust biofilms by altering cellula...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of medicinal chemistry 2025-02, Vol.283, p.117163, Article 117163
Hauptverfasser: Leitão, Miguel M., Gonçalves, Ariana S.C., Moreira, Joana, Fernandes, Carlos, Borges, Fernanda, Simões, Manuel, Borges, Anabela
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Iron is essential for the formation, maturation and dispersal of bacterial biofilms, playing a crucial role in the physiological and metabolic functions of bacteria as well as in the regulation of virulence. Limited availability of iron can impair the formation of robust biofilms by altering cellular motility, hydrophobicity and protein composition of the bacterial surface. In this study, the antibiofilm activity of two natural iron chelating agents, kojic acid (5-hydroxy-2-hydroxymethyl-4H-pyran-4-one) and maltol (3-hydroxy-2-methyl-4-pyrone), were investigated against Staphylococcus aureus and Pseudomonas aeruginosa. In addition, the ability of these 2-hydroxy-4-pyrone derivatives in preventing and eradicating S. aureus and P. aeruginosa biofilms through the enhancement of the efficacy of two antibiotics (tobramycin and ciprofloxacin) was explored. The iron binding capacity of the kojic acid and maltol was confirmed by their affinity for iron (III) which was found to be about 90 %, comparable to the regular chelating agent ethylenediaminetetraacetic acid (EDTA, 89 %). The antibiofilm efficacy of 2-hydroxy-4-pyrone derivatives, alone and in combination with antibiotics, was evaluated by measuring the total biomass, metabolic activity, and culturability of biofilm cells. Furthermore, their impact on the membrane integrity of S. aureus biofilm cells was investigated using flow cytometry and epifluorescence microscopy with propidium iodide staining. It was also examined the ability of 2-hydroxy-4-pyrone derivatives and 2-hydroxy-4-pyrone derivate-antibiotic dual-combinations in inhibiting the production of virulence factors (total proteases, lipases, gelatinases and siderophores) by S. aureus. Regarding biofilm formation, the results showed that 2-hydroxy-4-pyrone derivatives alone reduced the metabolic activity of S. aureus biofilm cells by over 40 %. When combined with tobramycin, a 2-log (CFU cm−2) reduction in S. aureus biofilm cells was observed. Moreover, the combination of maltol and kojic acid with ciprofloxacin prevented P. aeruginosa biomass production by 60 %, compared to 36 % with ciprofloxacin alone. In pre-established S. aureus and P. aeruginosa biofilms, selected compounds reduced the metabolic activity by over 75 %, and a 3-log (CFU cm−2) reduction in the culturability of biofilm cells was noted when kojic acid and maltol were combined with antibiotics. Moreover, 2-hydroxy-4-pyrone derivatives alone and in combination with tobramycin, damaged
ISSN:0223-5234
1768-3254
1768-3254
DOI:10.1016/j.ejmech.2024.117163