Discovery of a Gut Bacterial Pathway for Ergothioneine Catabolism

Ergothioneine is a diet-derived micronutrient for humans. However, enzymes involved in the catabolism of ergothioneine in human gut bacteria have not yet been identified. Herein, we characterize a sulfidogenic pathway for gut bacterial catabolism of this micronutrient, which involves an unprecedente...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2025-01, Vol.147 (1), p.257-264
Hauptverfasser: Feng, Chenxi, Yan, Qiongxiang, Li, Xianyi, Zhao, Hong, Huang, Hua, Zhang, Xinshuai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Ergothioneine is a diet-derived micronutrient for humans. However, enzymes involved in the catabolism of ergothioneine in human gut bacteria have not yet been identified. Herein, we characterize a sulfidogenic pathway for gut bacterial catabolism of this micronutrient, which involves an unprecedented reductive desulfurization reaction catalyzed by members of the xanthine oxidoreductase family (XOR), a class of molybdenum-containing flavoproteins. Notably, this is the first C–S bond cleavage reaction known to be catalyzed by XORs. Evidence for operation of this pathway was gained through in vitro reconstruction using heterologously produced enzymes derived from the human gut bacterium Blautia producta ATCC 27340. This catabolic activity enables B. producta ATCC 27340 to use ergothioneine as an alternative electron acceptor source. Homologues of the pathway enzymes are shown to be present not only in human gut bacteria but also in many environmental bacteria, suggesting the wide distribution of this catabolic strategy. In relation to the sulfur-containing metabolite, this discovery provides significant insight into biogeochemical sulfur cycling in diverse anoxic habitats beyond the human gut and, moreover, the design of new approaches for controlling intestinal hydrogen sulfide (H2S) production.
ISSN:0002-7863
1520-5126
1520-5126
DOI:10.1021/jacs.4c09350