Natural Macromolecule-Based Lubricative Catheter Coatings with Sustained Adaptive Antibacterial Property for Encrustation and Infection Prevention
Catheter-associated urinary tract infection (CAUTI) are a global health burden. Moreover, the friction during urinary catheter placement also induces pain in patients. Therefore, there is a pressing need to develop effective antibacterial and lubricative coatings on the surface of urinary catheter....
Gespeichert in:
Veröffentlicht in: | Advanced healthcare materials 2024-12, p.e2402359 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Catheter-associated urinary tract infection (CAUTI) are a global health burden. Moreover, the friction during urinary catheter placement also induces pain in patients. Therefore, there is a pressing need to develop effective antibacterial and lubricative coatings on the surface of urinary catheter. In this work, a facile volatilization film-forming method is used to construct coatings on catheter surfaces. Xanthan gum (SR), which has good lubricative and antifouling properties, is oxidized to cross-link with multi-amino compounds, gentamicin (GS), and gelatin, to fabricate uniform coatings on silicone catheters (SR-GXGs). The structures of SR-GXGs are regulated by the components of the film formation solutions. The bacterial metabolism can produce an acidic micro-environment that can regulate GS release to achieve on-demand administration. SR-GXG2 can eliminate 99.99% of common pathogenic bacteria and reduce the dynamic friction coefficient by 98.73%, and showed high stability in a 7-day flowing experiment. In addition, the universality of this method is demonstrated on various kinds of matrices with different shapes, including commercial urethral catheters. In vivo, SR-GXG2 can effectively avoid urinary tract injury and encrustation phenomenon because of its good anti-infection, antifouling, and lubricative properties. This work provides a promising strategy for developing multifunctional antibacterial coatings on medical catheters. |
---|---|
ISSN: | 2192-2640 2192-2659 2192-2659 |
DOI: | 10.1002/adhm.202402359 |