PINK1 is a target of T cell responses in Parkinson's disease

Parkinson's disease (PD) is the second most prevalent neurodegenerative disorder. While there is no curative treatment, the immune system's involvement with autoimmune T cells that recognize the protein alpha-synuclein (α-syn) in a subset of individuals suggests new areas for therapeutic s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of clinical investigation 2024-12
Hauptverfasser: Williams, Gregory P, Freuchet, Antoine, Michaelis, Tanner, Frazier, April, Tran, Ngan K, Rodrigues Lima-Junior, João, Phillips, Elizabeth J, Mallal, Simon A, Litvan, Irene, Goldman, Jennifer G, Alcalay, Roy N, Sidney, John, Sulzer, David, Sette, Alessandro, Lindestam Arlehamn, Cecilia S
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Parkinson's disease (PD) is the second most prevalent neurodegenerative disorder. While there is no curative treatment, the immune system's involvement with autoimmune T cells that recognize the protein alpha-synuclein (α-syn) in a subset of individuals suggests new areas for therapeutic strategies. As not all patients with PD have T cells specific for α-syn, we explored additional autoantigenic targets of T cells in PD. We generated 15-mer peptides spanning several PD-related proteins implicated in PD pathology, including Glucosylceramidase Beta 1 (GBA), Superoxide dismutase 1 (SOD1), PTEN Induced Kinase 1 (PINK1), Parkin RBR E3 Ubiquitin Protein Ligase (parkin), Oxoglutarate Dehydrogenase (OGDH), and Leucine Rich Repeat Kinase 2 (LRRK2). Cytokine production (IFNγ, IL-5, IL-10) against these proteins was measured using a fluorospot assay and PBMCs from patients with PD and age-matched healthy controls. We identified PINK1, a regulator of mitochondrial stability, as an autoantigen targeted by T cells, as well as its unique epitopes, and their HLA restriction. The PINK1-specific T cell reactivity revealed sex-based differences as it was predominantly found in male patients with PD, which may contribute to the heterogeneity of PD. Identifying and characterizing PINK1 and other autoinflammatory targets may lead to antigen-specific diagnostics, progression markers, and/or novel therapeutic strategies for PD.
ISSN:1558-8238
1558-8238
DOI:10.1172/JCI180478