Prediction of Protein Secondary Structures Based on Substructural Descriptors of Molecular Fragments
The accurate prediction of secondary structures of proteins (SSPs) is a critical challenge in molecular biology and structural bioinformatics. Despite recent advancements, this task remains complex and demands further exploration. This study presents a novel approach to SSP prediction using atom-cen...
Gespeichert in:
Veröffentlicht in: | International journal of molecular sciences 2024-12, Vol.25 (23), p.12525 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The accurate prediction of secondary structures of proteins (SSPs) is a critical challenge in molecular biology and structural bioinformatics. Despite recent advancements, this task remains complex and demands further exploration. This study presents a novel approach to SSP prediction using atom-centric substructural multilevel neighborhoods of atoms (MNA) descriptors for protein molecular fragments. A dataset comprising over 335,000 SSPs, annotated by the Dictionary of Secondary Structure in Proteins (DSSP) software from 37,000 proteins, was constructed from Protein Data Bank (PDB) records with a resolution of 2 Å or better. Protein fragments were converted into structural formulae using the RDKit Python package and stored in SD files using the MOL V3000 format. Classification sequence-structure-property relationships (SSPR) models were developed with varying levels of MNA descriptors and a Bayesian algorithm implemented in MultiPASS software. The average prediction accuracy (AUC) for eight SSP types, calculated via leave-one-out cross-validation, was 0.902. For independent test sets (ASTRAL and CB513 datasets), the best SSPR models achieved AUC, Q3, and Q8 values of 0.860, 77.32%, 70.92% and 0.889, 78.78%, 74.74%, respectively. Based on the created models, a freely available web application MNA-PSS-Pred was developed. |
---|---|
ISSN: | 1422-0067 1661-6596 1422-0067 |
DOI: | 10.3390/ijms252312525 |