Controlled and Safe Hydrogen Generation from Waste Aluminum and Water, a New Approach to Hydrogen Generation

A new method is proposed to generate hydrogen in situ at low pressure from powder-pressed recycled aluminum turnings activated with small amounts of NaOH and drops of water. The contribution of this system is that the user can obtain small flows of high-purity hydrogen (>99%) to charge their port...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2024-11, Vol.17 (23), p.5885
Hauptverfasser: Salueña-Berna, Xavier, Marín-Genescà, Marc, Mujal Rosas, Ramon, Arias, Manuel-Jose Lis
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A new method is proposed to generate hydrogen in situ at low pressure from powder-pressed recycled aluminum turnings activated with small amounts of NaOH and drops of water. The contribution of this system is that the user can obtain small flows of high-purity hydrogen (>99%) to charge their portable electronic devices in remote places, in a simple, controlled, and safe way, since only water is used. Test tubes that contain tiny amounts of NaOH on their surface can be transported and used without contact. In addition to being a safer system, a smaller amount of NaOH and water is needed compared to other systems, there is no need to preheat the water, and the system can even generate heat. As the feeding is drop by drop, the hydrogen flow can be easily controlled by manual or automatic dosing. The waste obtained is solid and contains mostly aluminum hydroxide with some NaOH and impurities from the waste of origin, which are easy to sell and recycle. A study has been carried out to optimize the type of test tubes and establish critical parameters. The results show that a constant and controllable flow rate of hydrogen can be obtained depending on the drip frequency where the chemical reaction predominates over diffusion, that the optimal amount of NaOH is 20 wt%, that a finer grain size can increase the H yield with respect to the stoichiometric value but reduces the instantaneous flow with respect to that obtained with larger grains, and that it is very important to control the density and the impurities to increase porosity and therefore water diffusion. The estimated cost of the hydrogen produced is 3.15 EUR/kgH and an energy density of 1.12 kWh/kg was achieved with a test tube of 92% aluminum purity and 20 wt% NaOH.
ISSN:1996-1944
1996-1944
DOI:10.3390/ma17235885