Combining Cold Atmospheric Plasma and Environmental Nanoparticle Removal Device Reduces Neurodegenerative Markers

Ageing leads to a gradual deterioration of the organs, with the brain being particularly susceptible, often leading to neurodegeneration. This process includes well-known changes such as tau hyperphosphorylation and beta-amyloid deposition, which are commonly associated with neurodegenerative diseas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of molecular sciences 2024-12, Vol.25 (23), p.12986
Hauptverfasser: Menéndez-Coto, Nerea, Garcia-Gonzalez, Claudia, Baena-Huerta, Francisco Javier, Zapata-Pérez, Rubén, Rabadán-Ros, Rubén, Núñez-Delicado, Estrella, González-Llorente, Lucía, Caso-Peláez, Enrique, Coto-Montes, Ana
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Ageing leads to a gradual deterioration of the organs, with the brain being particularly susceptible, often leading to neurodegeneration. This process includes well-known changes such as tau hyperphosphorylation and beta-amyloid deposition, which are commonly associated with neurodegenerative diseases but are also present in ageing. These structures are triggered by earlier cellular changes such as energy depletion and impaired protein synthesis, both of which are essential for cell function. These changes may in part be induced by environmental pollution, which has been shown to accelerate these processes. Cold Atmospheric Plasma (CAP) or atmospheric pressure gas discharge plasmas have shown promise in activating the immune system and improving cellular function in vitro, although their effects at the organ level remain poorly understood. Our aim in this work is to investigate the effect of a device that combines CAP treatment with the effective removal of environmental nanoparticles, typical products of pollution, on the activity of aged mouse brains. The results showed an increase in energy capacity, a reduction in reticulum stress and an activation of cellular autophagic clearance, minimising aggresomes in the brain. This leads to a reduction in key markers of neurodegeneration such as tau hyperphosphorylation and beta-amyloid deposition, demonstrating the efficacy of the tested product at the brain level.
ISSN:1422-0067
1661-6596
1422-0067
DOI:10.3390/ijms252312986