Degradation and/or Dissociation of Neurodegenerative Disease-Related Factor Amyloid-β by a Suspension Containing Calcium Hydrogen Carbonate Mesoscopic Crystals

Amyloid-β (Aβ) aggregates accumulate in the brains of individuals with Alzheimer's disease and are thought to potentially act as prions, promoting further aggregation. Consequently, the biochemistry of Aβ has emerged as a promising target for Alzheimer's disease. CAC-717, a suspension of c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of molecular sciences 2024-12, Vol.25 (23), p.12761
Hauptverfasser: Iwaya, Nodoka, Sakudo, Akikazu, Kanda, Takuya, Furusaki, Koichi, Onishi, Rumiko, Onodera, Takashi, Yoshikawa, Yasuhiro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Amyloid-β (Aβ) aggregates accumulate in the brains of individuals with Alzheimer's disease and are thought to potentially act as prions, promoting further aggregation. Consequently, the biochemistry of Aβ has emerged as a promising target for Alzheimer's disease. CAC-717, a suspension of calcium bicarbonate mesoscopic structures derived from natural sources, has been shown to inactivate various pathogens, including prions. This study examined the effects of CAC-717 on both the formation and degradation/dissociation of Aβ aggregates using thioflavin T fluorescence and enzyme-linked immunosorbent assays. Aggregates of Aβ(1-42) peptide were generated by incubation at 37 °C for 24 h, and the effect of introducing CAC-717 on the aggregates was evaluated after further incubation at 25 °C for 30 min. Moreover, CAC-717 was also tested for its ability to inhibit the initial aggregation of Aβ. The results showed that CAC-717 significantly degraded and/or dissociated Aβ aggregates in a concentration-dependent manner. Specifically, CAC-717 treatment for 5 min disrupted Aβ aggregates to give Aβ monomer and oligomer concentrations as high as 130 nM compared to ~10 nM for the water control. In addition, CAC-717 degraded and/or dissociated aggregates within 10 s at 37 °C, and pre-treatment with CAC-717 significantly inhibited aggregation. These results suggest that CAC-717 not only degrades and/or dissociates Aβ aggregates but also inhibits their formation, highlighting its potential as a disinfectant for Alzheimer's disease.
ISSN:1422-0067
1661-6596
1422-0067
DOI:10.3390/ijms252312761