Rosmarinic Acid Ameliorates Dermatophagoides farinae Extract-Induced Atopic Dermatitis-like Skin Inflammation by Activating the Nrf2/HO-1 Signaling Pathway
Atopic dermatitis (AD) is one of the most common chronic inflammatory skin diseases. AD pathogenesis is associated with increased oxidative stress, impairment of the skin barrier, and activation of the immune response. Rosmarinic acid (RA), a caffeic acid ester, is known for its anti-inflammatory an...
Gespeichert in:
Veröffentlicht in: | International journal of molecular sciences 2024-12, Vol.25 (23), p.12737 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Atopic dermatitis (AD) is one of the most common chronic inflammatory skin diseases. AD pathogenesis is associated with increased oxidative stress, impairment of the skin barrier, and activation of the immune response. Rosmarinic acid (RA), a caffeic acid ester, is known for its anti-inflammatory and antioxidant properties. However, the effects of RA on
extract (DfE)-induced AD-like skin inflammation, as well as its ability to regulate oxidative stress through the Nrf2/HO-1 pathway in TNF-α/IFN-γ-treated keratinocytes, remain unclear. We investigated RA activity in a DfE-induced AD-like skin inflammation mouse model and IFN-γ/TNF-α-stimulated keratinocytes. We found that RA attenuates DfE-induced inflammation by decreasing dermatitis scores and serum inflammatory marker levels and mast cell infiltration. Additionally, RA significantly suppressed IFN-γ/TNF-α-induced chemokine production in keratinocytes and reduced Th cytokine levels in concanavalin A-stimulated splenocytes. Importantly, RA also increased Nrf2/HO-1 expression in TNF-α/IFN-γ-treated keratinocytes. In conclusion, this study demonstrated that RA effectively alleviates DfE-induced AD-like skin lesions by reducing the levels of inflammatory cytokines and chemokines. Furthermore, RA promotes Nrf2/HO-1 signaling in keratinocytes, which may help mitigate DfE-induced oxidative stress, thereby alleviating AD-like skin inflammation. These findings highlight the potential of RA as a therapeutic agent for treating AD and other skin inflammation. |
---|---|
ISSN: | 1422-0067 1661-6596 1422-0067 |
DOI: | 10.3390/ijms252312737 |