Ro-Vibrational Spectrum of Vanadium Monoxide (VO) at 10 μm

The high resolution ro-vibrational spectrum of the diatomic molecule vanadium oxide (VO) in the gas phase was measured around 1000 cm–1. In total, 1529 ro-vibrational transitions were assigned, in a spectral range of 984–1036 cm–1. For many transitions, the hyperfine structure resulting from the nuc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2025-01, Vol.129 (1), p.58-65
Hauptverfasser: Döring, Eileen, Blum, Luisa, Breier, Alexander A., Giesen, Thomas F., Fuchs, Guido W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The high resolution ro-vibrational spectrum of the diatomic molecule vanadium oxide (VO) in the gas phase was measured around 1000 cm–1. In total, 1529 ro-vibrational transitions were assigned, in a spectral range of 984–1036 cm–1. For many transitions, the hyperfine structure resulting from the nuclear spin of 51V were resolved and the molecular parameters for the first (v = 1) and second (v = 2) excited vibrational state of VO were derived. The molecules were generated using a laser ablation source in which a vanadium rod was laser ablated and gaseous nitrous oxide (N2O) was introduced, as an oxygen donor. Subsequent supersonic adiabatic expansion cooled the molecules. The spectrum of VO was measured with quantum cascade lasers where the laser beams were perpendicularly oriented to the supersonic jet.
ISSN:1089-5639
1520-5215
1520-5215
DOI:10.1021/acs.jpca.4c05996