Revealing the Anticancer Mechanism of Cephaibol A, a Peptaibol Isolated from Acremonium tubakii BMC-58, Triggering Apoptosis via the Mitochondrial Pathway in Human Breast Cancer Cells

Cephaibol A was isolated from a freshwater fungus Acremonium tubakii BMC-58 extract which composed of 16 amino acids and featuring multiple α-aminoisobutyric acid. We investigated the cytotoxicity of cephaibol A on MDA-MB-231 cells to elucidate its potential antitumor activity and mechanism. The stu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biological & pharmaceutical bulletin 2024-12, Vol.47 (12), p.2065-2075, Article b24-00537
Hauptverfasser: Wang, Haotian, Wang, Lusheng, Xiao, Jun, Cong, Yajuan, Zong, Shikun, Zhang, Yixuan, Liu, Jiannan, Zhu, Meilin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cephaibol A was isolated from a freshwater fungus Acremonium tubakii BMC-58 extract which composed of 16 amino acids and featuring multiple α-aminoisobutyric acid. We investigated the cytotoxicity of cephaibol A on MDA-MB-231 cells to elucidate its potential antitumor activity and mechanism. The study found that cephaibol A concentration-dependently blocked the cell cycle in S phase and inhibited cell proliferation. Meanwhile, cephaibol A could reduce the migration and invasion abilities of MDA-MB-231 cells. Further studies proved that cephaibol A caused mitochondrial dysfunction and increased reactive oxygen species (ROS) accumulation. Mitochondrial membrane potential (ΔΨm) assay suggested that cephaibol A induced apoptosis by affecting Bcl-2, Bax and cytochrome c levels, thus decreasing ΔΨm and activating the caspase cascade reaction. Moreover, cephaibol A significantly inhibited tumor growth and improved survival rates in the MDA-MB-231 cell mice model. These findings established cephaibol A as a potential antitumor agent that inhibited tumor cell proliferation in vitro and in vivo by affecting mitochondrial dysfunction and inducing apoptosis in MDA-MB-231 cells through structural damage.
ISSN:0918-6158
1347-5215
1347-5215
DOI:10.1248/bpb.b24-00537