Nerol attenuates doxorubicin-induced heart failure by inhibiting cardiomyocyte apoptosis in rats

As a broad-spectrum anti-tumour drug, the clinical application of DOX is often limited owing to its cardiotoxicity. Nerol is a naturally occurring compound with both anti-inflammatory and antioxidant properties. However, the ability of Nerol to improve DOX-induced heart failure and its underlying me...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of pharmacology 2025-01, Vol.987, p.177203, Article 177203
Hauptverfasser: He, Mei-ling, Li, Xi-yue, Guo, Ya-qi, Li, Jiao, Zhang, Jing, Wang, Peng-yue, Liu, Tong, Yang, Jing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:As a broad-spectrum anti-tumour drug, the clinical application of DOX is often limited owing to its cardiotoxicity. Nerol is a naturally occurring compound with both anti-inflammatory and antioxidant properties. However, the ability of Nerol to improve DOX-induced heart failure and its underlying mechanisms remain unclear. Rat models of DOX-induced heart failure were established and rats were treated with various doses of Nerol. Apoptosis in cardiomyocytes was detected using TUNEL staining and the expression levels of apoptosis-related proteins were detected using western blotting and immunofluorescence. In addition, mitochondrial structure was observed using electron microscopy, mitochondrial membrane potential was detected using a JC-1 fluorescent probe, and superoxide dismutase were detected to comprehensively evaluate the regulatory effect of Nerol on mitochondrial function and oxidative stress. Analysis showed that the number of apoptotic cardiomyocytes was significantly reduced after Nerol treatment, accompanied by the downregulation of Bax protein expression and upregulation of Bcl-2 protein expression, suggesting that Nerol may inhibit the apoptotic process of cardiomyocytes by regulating the balance of Bcl-2 family proteins. In addition, the mitochondrial function of Nerol-treated rats was protected, as indicated by the stability of the mitochondrial membrane potential, integrity of mitochondrial morphology. These changes suggest that Nerol may reduce the severity of heart failure by improving mitochondrial function. Nerol plays a positive role in alleviating DOX-induced heart failure in rats, possibly by inhibiting cardiomyocyte apoptosis. These findings provide novel evidence and potential targets for developing new cardioprotective drugs. [Display omitted]
ISSN:0014-2999
1879-0712
1879-0712
DOI:10.1016/j.ejphar.2024.177203