Ultra-broadband terahertz radar imaging with a 4-in. spintronic strong-field emitter

Terahertz (THz) radar offers significant advantages, notably high-frequency and strong penetration ability, making it highly promising for applications in aerospace, non-destructive testing, and other imaging scenarios. However, existing THz radar imaging technologies face challenges in large-scale...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics letters 2024-12, Vol.49 (24), p.7118
Hauptverfasser: Zhang, Mingxuan, Li, Jiahui, Liu, Shaojie, Leng, Ning, Ren, Zejun, Yang, Zehao, Chen, Xinxiong, Kong, Deyin, Li, Jianghao, Huang, Ziyu, Zhang, Baolong, Wan, Caihua, Bai, Ming, Wu, Xiaojun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Terahertz (THz) radar offers significant advantages, notably high-frequency and strong penetration ability, making it highly promising for applications in aerospace, non-destructive testing, and other imaging scenarios. However, existing THz radar imaging technologies face challenges in large-scale target detection due to the complexity and high costs of the system, which limits their development and commercial application. Here we establish a radar system based on a one-dimensional photonic crystal structure-enhanced 4-inch spintronic strong-field THz emitter and obtain THz radar signals and imaging with a signal-to-noise ratio of ∼58 dB and a bandwidth exceeding 5 THz. Through the precise design of the emitter structure, we ensure not only the generation of a high-quality uniform plane wave when the THz beam diameter reaches 4 in. but also the applicability of the THz field strength for radar imaging measurements within a 4-in. field of view area. The approach provides a promising platform for ultra-broadband, high-resolution, near-monostatic THz radar imaging, with broad potential applications in aerospace engineering, stealth testing, THz 3D reconstruction, and THz tomography.
ISSN:0146-9592
1539-4794
1539-4794
DOI:10.1364/OL.546048