Ultra-broadband terahertz radar imaging with a 4-in. spintronic strong-field emitter
Terahertz (THz) radar offers significant advantages, notably high-frequency and strong penetration ability, making it highly promising for applications in aerospace, non-destructive testing, and other imaging scenarios. However, existing THz radar imaging technologies face challenges in large-scale...
Gespeichert in:
Veröffentlicht in: | Optics letters 2024-12, Vol.49 (24), p.7118 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Terahertz (THz) radar offers significant advantages, notably high-frequency and strong penetration ability, making it highly promising for applications in aerospace, non-destructive testing, and other imaging scenarios. However, existing THz radar imaging technologies face challenges in large-scale target detection due to the complexity and high costs of the system, which limits their development and commercial application. Here we establish a radar system based on a one-dimensional photonic crystal structure-enhanced 4-inch spintronic strong-field THz emitter and obtain THz radar signals and imaging with a signal-to-noise ratio of ∼58 dB and a bandwidth exceeding 5 THz. Through the precise design of the emitter structure, we ensure not only the generation of a high-quality uniform plane wave when the THz beam diameter reaches 4 in. but also the applicability of the THz field strength for radar imaging measurements within a 4-in. field of view area. The approach provides a promising platform for ultra-broadband, high-resolution, near-monostatic THz radar imaging, with broad potential applications in aerospace engineering, stealth testing, THz 3D reconstruction, and THz tomography. |
---|---|
ISSN: | 0146-9592 1539-4794 1539-4794 |
DOI: | 10.1364/OL.546048 |