Graphene-Inspired Wafer-Scale Ultrathin Gold Films
As the trajectory toward the graphene era continues, there is a compelling need to harness 2D technology further for the transformation of three-dimensional (3D) materials production and applications. Here, we resolve this challenge for one of the most widely utilized 3D materials in modern electron...
Gespeichert in:
Veröffentlicht in: | Nano letters 2024-12, Vol.24 (51), p.16270-16275 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | As the trajectory toward the graphene era continues, there is a compelling need to harness 2D technology further for the transformation of three-dimensional (3D) materials production and applications. Here, we resolve this challenge for one of the most widely utilized 3D materials in modern electronicsgoldusing graphene-inspired fabrication technology that allows us to develop a multistep production method of ultrathin gold films. Such films demonstrate continuous morphology, low sheet resistance (10 Ω/sq), and high transparency (80%), offering opportunities in a variety of technological and scientific sectors. To this end, we demonstrate smart contact lenses and thermal camouflage based on ultrathin gold. Technologically, the record-breaking characteristics of ultrathin gold films open new horizons for flexible and transparent electrodes for photonics and optoelectronics. Most importantly, the demonstration of transferable wafer-scale ultrathin gold changes the paradigm of the field of 2D crystals and dramatically expands the range of available quasi-2D materials. |
---|---|
ISSN: | 1530-6984 1530-6992 1530-6992 |
DOI: | 10.1021/acs.nanolett.4c04311 |