Efficient Gate‐Tunable Hot‐Carrier Photocurrent from Perovskite Multiple Quantum Wells

Hot‐carrier relaxation above the bandgap results in significant energy losses, making the extraction of hot carriers a critical challenge for efficient hot‐carrier photocurrent generation in devices. In this study, we observe long‐lived hot carriers in the metal‐halide perovskite multiple quantum we...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2024-12, Vol.37 (5), p.e2413839-n/a
Hauptverfasser: Wang, Chenhao, Wei, Qi, Ren, Hui, Wong, Kin Long, Liu, Qi, Zhou, Luwei, Wang, Pengzhi, Cai, Songhua, Yin, Jun, Li, Mingjie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Hot‐carrier relaxation above the bandgap results in significant energy losses, making the extraction of hot carriers a critical challenge for efficient hot‐carrier photocurrent generation in devices. In this study, we observe long‐lived hot carriers in the metal‐halide perovskite multiple quantum wells, (BA)2(MA)n−1PbnI3n+1 (n = 3), and demonstrate effective hot‐hole photocurrent generation using 2D MoS₂ as an extraction layer. A high external quantum efficiency of short‐circuit hot‐carrier photocurrent of up to 35.4% is achieved. Further enhancement in photocurrent efficiency and open‐circuit photovoltage is achieved when a gate electric field is applied, resulting in an external quantum efficiency of up to 61.9%. Evidence of hot‐hole extraction is validated through operando transient reflection measurements on the working devices, with studies that depend on wavelength, carrier density, and gate voltage. DFT calculations on the heterostructure devices under different bias voltages further elucidate the mechanism of hot‐hole extraction enhancement. These findings underscore the potential of perovskite multiple quantum wells as long‐lived hot‐carrier generators and highlight the role of 2D transition metal dichalcogenide semiconductors as efficient hot‐carrier extraction electrodes for low‐power optoelectronics. Hot carrier devices with low‐dimensional semiconductor heterostructures are promising for enhancing photon‐to‐current conversion beyond the Shockley‐Queisser limit. This study presents a 2D Van der Waals heterostructure device made of 2D perovskite quantum wells and few‐layer MoS₂. The device shows efficient gate‐tunable hot‐hole photocurrent and high external quantum efficiency.
ISSN:0935-9648
1521-4095
1521-4095
DOI:10.1002/adma.202413839