Control of N-nitrosamine impurities in drug products: Progressing the current CPCA framework and supporting the derivation of robust compound specific acceptable intakes

The carcinogenic potency categorisation approach (CPCA) has recently been introduced by health authorities. In this model, structural features from recent literature, industry proposals, and analyses performed by health authorities, provide a rapid assessment of the potential acceptable intake (AI)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Regulatory toxicology and pharmacology 2025-02, Vol.156, p.105762, Article 105762
Hauptverfasser: Ponting, David J., Czich, Andreas, Felter, Susan P., Glowienke, Susanne, Harvey, James S., Nudelman, Raphael, Schlingemann, Joerg, Simon, Stephanie, Smith, Graham F., Teasdale, Andrew, Thomas, Robert
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The carcinogenic potency categorisation approach (CPCA) has recently been introduced by health authorities. In this model, structural features from recent literature, industry proposals, and analyses performed by health authorities, provide a rapid assessment of the potential acceptable intake (AI) for a nitrosamine impurity. As with other screening regulatory values (such as the ICH M7 Threshold of Toxicological Concern), the CPCA is conservative and can be considered a de minimis risk management framework. In cases where a nitrosamine drug substance-related impurity (NDSRI) is present below the CPCA limit, the framework provides resolution from a toxicological perspective (i.e., no further toxicology studies are required). Where an NDSRI is above the CPCA limit, the framework provides for the initiation of additional activities (i.e., the CPCA is not the only possible limit). Read-across approaches are described in both the CPCA and M7 guidance and can provide a limit with more specific applicability than the general model. The use of available experimental data (in vitro or in vivo), is valuable in order to provide an even more specific limit. The CPCA provides a framework; however, data should permit changing the AI from initial structural assessment, based on increasing data, to ultimately increase precision of the AI. •The CPCA provides a tiered TTC-like triage for nitrosamine impurity assessment.•De minimis risk TTC-like limits should not be definitive safety thresholds.•Risk assessment is an iterative process – CPCA refinements are possible.•Information from close analogues is an important part of risk assessment.•Compound-specific data, from in silico to in vivo studies, refines initial triage.
ISSN:0273-2300
1096-0295
1096-0295
DOI:10.1016/j.yrtph.2024.105762