Printer Troubleshooting Using Bayesian Networks
This paper describes a real world Bayesian network application - diagnosis of a printing system. The diagnostic problem is represented in a simple Bayes model which is sufficient under the single-fault assumption. The construction of this Bayesian network structure is described, along with guideline...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper describes a real world Bayesian network application - diagnosis of a printing system. The diagnostic problem is represented in a simple Bayes model which is sufficient under the single-fault assumption. The construction of this Bayesian network structure is described, along with guidelines for acquiring the necessary knowledge. Several extensions to the algorithms of [2] for finding the best next step are presented. The troubleshooters are executed with custom-built troubleshooting software that guides the user through a good sequence of steps. Screenshots from this software is shown. |
---|---|
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/3-540-45049-1_45 |