Dimethylamine Bismuth Iodide: A Lead-Free Perovskite Enabling Ultra-Sensitive UVC Photodetection with Low Operating Voltage and High Detectivity

Ultraviolet (UV) photodetectors (PDs) are essential for various applications, but traditional materials face challenges in cost, fabrication, and performance. This study introduces dimethylamine bismuth iodide (DMABI) as a promising lead-free perovskite for UV PDs, particularly in the UVC region. DM...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2024-12, p.e2411332
Hauptverfasser: Ajayakumar, Avija, Sławek, Andrzej, Muthu, Chinnadurai, Dev, Amarjith V, Shajan, Namitha K, Ajith, Anila, Szaciłowski, Konrad, Vijayakumar, Chakkooth
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Ultraviolet (UV) photodetectors (PDs) are essential for various applications, but traditional materials face challenges in cost, fabrication, and performance. This study introduces dimethylamine bismuth iodide (DMABI) as a promising lead-free perovskite for UV PDs, particularly in the UVC region. DMABI demonstrates exceptional device parameters, including an ultralow dark current of 0.12 pA at 0.05 V, a high on/off ratio of 7.1 × 10 , and a peak detectivity of 3.18 × 10 Jones. The unique structure of DMABI, with isolated octahedral units, ensures minimal connectivity, significantly reducing dark current. When exposed to high-energy UV light, carriers gain sufficient energy to hop between octahedrally coordinated bismuth centres, resulting in substantial photocurrent. The small size of the organic cation facilitates efficient charge transfer, contributing to high responsivity (1.46 A W ) and external quantum efficiency (up to 717%). These results establish DMABI as a superior, low-cost candidate for UV photodetection, addressing limitations of existing materials. The study provides insights into the molecular mechanisms driving these characteristics and highlights potential for future advancements in UV PD technology.
ISSN:1521-4095
1521-4095
DOI:10.1002/adma.202411332