Artificial intelligence-guided design of lipid nanoparticles for pulmonary gene therapy

Ionizable lipids are a key component of lipid nanoparticles, the leading nonviral messenger RNA delivery technology. Here, to advance the identification of ionizable lipids beyond current methods, which rely on experimental screening and/or rational design, we introduce lipid optimization using neur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature biotechnology 2024-12
Hauptverfasser: Witten, Jacob, Raji, Idris, Manan, Rajith S, Beyer, Emily, Bartlett, Sandra, Tang, Yinghua, Ebadi, Mehrnoosh, Lei, Junying, Nguyen, Dien, Oladimeji, Favour, Jiang, Allen Yujie, MacDonald, Elise, Hu, Yizong, Mughal, Haseeb, Self, Ava, Collins, Evan, Yan, Ziying, Engelhardt, John F, Langer, Robert, Anderson, Daniel G
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Ionizable lipids are a key component of lipid nanoparticles, the leading nonviral messenger RNA delivery technology. Here, to advance the identification of ionizable lipids beyond current methods, which rely on experimental screening and/or rational design, we introduce lipid optimization using neural networks, a deep-learning strategy for ionizable lipid design. We created a dataset of >9,000 lipid nanoparticle activity measurements and used it to train a directed message-passing neural network for prediction of nucleic acid delivery with diverse lipid structures. Lipid optimization using neural networks predicted RNA delivery in vitro and in vivo and extrapolated to structures divergent from the training set. We evaluated 1.6 million lipids in silico and identified two structures, FO-32 and FO-35, with local mRNA delivery to the mouse muscle and nasal mucosa. FO-32 matched the state of the art for nebulized mRNA delivery to the mouse lung, and both FO-32 and FO-35 efficiently delivered mRNA to ferret lungs. Overall, this work shows the utility of deep learning for improving nanoparticle delivery.
ISSN:1546-1696
1546-1696
DOI:10.1038/s41587-024-02490-y