OsbZIP23 delays flowering by repressing OsMADS14 expression in rice
Flowering time is a fundamental factor determining the global distribution and final yield of rice (Oryza sativa L.). The initiation of the floral transition process signifies the beginning of the reproductive phase. The florigens Heading Date 3a (Hd3a) and Rice Flowering Locus T 1 (RFT1) combine wi...
Gespeichert in:
Veröffentlicht in: | Plant physiology and biochemistry 2024-12, Vol.219, p.109389, Article 109389 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Flowering time is a fundamental factor determining the global distribution and final yield of rice (Oryza sativa L.). The initiation of the floral transition process signifies the beginning of the reproductive phase. The florigens Heading Date 3a (Hd3a) and Rice Flowering Locus T 1 (RFT1) combine with GF14 proteins and OsFD-like basic leucine zipper (bZIP) transcription factors to form florigen activation/repressor complexes (FACs/FRCs) that regulate the transition to flowering. We herein report that a bZIP transcription factor (OsbZIP23) functions as a flowering repressor. Transgenic plants overexpressing OsbZIP23 exhibited delayed flowering, which was in contrast to the slightly early flowering of the osbzip23 mutants, under natural short-day and long-day conditions. Molecular and biochemical analyses indicated that OsbZIP23 can bind to the 5′ untranslated region of OsMADS14 and suppress expression. Moreover, it delays the floral transition probably by interacting with OsFTL1/Hd3a/RFT1 and 14-3-3 proteins to form FRCs. Our findings have further elucidated the molecular mechanisms regulating the flowering time in rice.
•OsbZIP23 functions as a flowering repressor in rice.•OsbZIP23 binds to the 5′ untranslated region of OsMADS14 and suppress its expression.•OsbZIP23 delay rice flowering probably by forming FRCs through interacting with OsFTL1/Hd3a/RFT1 and 14-3-3 proteins. |
---|---|
ISSN: | 0981-9428 1873-2690 1873-2690 |
DOI: | 10.1016/j.plaphy.2024.109389 |