A benzobthiophene-derived inhibitor of virus particle assembly via targeting capsid protein residue Arg157
As a biological macromolecule, the coat protein (CP) of potato virus Y (PVY) mediates the virus' primary pathogenic behaviors. It has been gradually realized that certain residues on the CP are crucial for functions such as virus particle movement and assembly. However, there are few reports of...
Gespeichert in:
Veröffentlicht in: | International journal of biological macromolecules 2024-12, Vol.287, p.138467 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | As a biological macromolecule, the coat protein (CP) of potato virus Y (PVY) mediates the virus' primary pathogenic behaviors. It has been gradually realized that certain residues on the CP are crucial for functions such as virus particle movement and assembly. However, there are few reports of potential drugs successfully targeting these key residues with unique mechanisms of action. Here, we disclose the first new phytovirucide that acts on the key site Arg157 (R157) on the PVY CP. In this investigation, we developed a series of benzo[b]thiophene-based compounds, strategically introducing sulfonamide functionalities to enhance their antiviral performance. Through bio-screening, derivative C54 (EC50 = 69.2 μg/mL for inactive activity) emerged as notably more effective against PVY than the established antiviral agent ningnanmycin (EC50 = 79.6 μg/mL). Mechanistic studies revealed that C54 is an inhibitor of viral particle assembly by specifically binding to the CP residue R157, thereby disrupting its interaction with RNA. These results underscore the promise of C54 as a potent antiviral lead and provide a fresh perspective on the strategic design of inhibitors focusing on viral assembly processes.As a biological macromolecule, the coat protein (CP) of potato virus Y (PVY) mediates the virus' primary pathogenic behaviors. It has been gradually realized that certain residues on the CP are crucial for functions such as virus particle movement and assembly. However, there are few reports of potential drugs successfully targeting these key residues with unique mechanisms of action. Here, we disclose the first new phytovirucide that acts on the key site Arg157 (R157) on the PVY CP. In this investigation, we developed a series of benzo[b]thiophene-based compounds, strategically introducing sulfonamide functionalities to enhance their antiviral performance. Through bio-screening, derivative C54 (EC50 = 69.2 μg/mL for inactive activity) emerged as notably more effective against PVY than the established antiviral agent ningnanmycin (EC50 = 79.6 μg/mL). Mechanistic studies revealed that C54 is an inhibitor of viral particle assembly by specifically binding to the CP residue R157, thereby disrupting its interaction with RNA. These results underscore the promise of C54 as a potent antiviral lead and provide a fresh perspective on the strategic design of inhibitors focusing on viral assembly processes. |
---|---|
ISSN: | 1879-0003 1879-0003 |
DOI: | 10.1016/j.ijbiomac.2024.138467 |