Flexible and stable piezoelectric nanogenerators based on monoclinic phase CsPbBr3 perovskite nanocrystals
CsPbBr3 perovskite has garnered significant attention in the field of optoelectronics due to its exceptional photoelectric properties. In this study, we report the fabrication of a piezoelectric nanogenerator (PNG) composed of a composite of monoclinic phase CsPbBr3 nanocrystals and polydimethylsilo...
Gespeichert in:
Veröffentlicht in: | Nanoscale 2024-12 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | CsPbBr3 perovskite has garnered significant attention in the field of optoelectronics due to its exceptional photoelectric properties. In this study, we report the fabrication of a piezoelectric nanogenerator (PNG) composed of a composite of monoclinic phase CsPbBr3 nanocrystals and polydimethylsiloxane. This is the first instance of a PNG based on the monoclinic phase of CsPbBr3. The PNG device has been optimized to operate at a frequency of 30 Hz and exhibits impressive output performance, generating a peak-to-peak output voltage of 50 V, an output current of 5.5 μA and a power density of 2.5 μW cm-2 when subjected to an applied force of only 4.2 N over an effective area of 8 cm2. The energy generated by this PNG can be efficiently collected using capacitors with a high energy conversion efficiency of 21.7%. Furthermore, the output voltage of the PNG remains at 98.5% of its initial value after 20 days, demonstrating exceptional stability. This study highlights the great potential of CsPbBr3 perovskite materials for the simple and cost-effective fabrication of high-performance multifunctional piezoelectric energy harvesting devices.CsPbBr3 perovskite has garnered significant attention in the field of optoelectronics due to its exceptional photoelectric properties. In this study, we report the fabrication of a piezoelectric nanogenerator (PNG) composed of a composite of monoclinic phase CsPbBr3 nanocrystals and polydimethylsiloxane. This is the first instance of a PNG based on the monoclinic phase of CsPbBr3. The PNG device has been optimized to operate at a frequency of 30 Hz and exhibits impressive output performance, generating a peak-to-peak output voltage of 50 V, an output current of 5.5 μA and a power density of 2.5 μW cm-2 when subjected to an applied force of only 4.2 N over an effective area of 8 cm2. The energy generated by this PNG can be efficiently collected using capacitors with a high energy conversion efficiency of 21.7%. Furthermore, the output voltage of the PNG remains at 98.5% of its initial value after 20 days, demonstrating exceptional stability. This study highlights the great potential of CsPbBr3 perovskite materials for the simple and cost-effective fabrication of high-performance multifunctional piezoelectric energy harvesting devices. |
---|---|
ISSN: | 2040-3372 2040-3372 |
DOI: | 10.1039/d4nr03579h |