Discovery of 6‑Fluoro-5-{4-[(5-fluoro-2-methyl-3-oxo-3,4-dihydroquinoxalin-6-yl)methyl]piperazin-1-yl}‑N‑methylpyridine-2-carboxamide (AZD9574): A CNS-Penetrant, PARP1-Selective Inhibitor

PARP inhibitors have attracted considerable interest in drug discovery due to the clinical success of first-generation agents such as olaparib, niraparib, rucaparib, and talazoparib. Their success lies in their ability to trap PARP to DNA; however, first-generation PARP inhibitors were not strictly...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of medicinal chemistry 2024-12, Vol.67 (24), p.21717-21728
Hauptverfasser: Johannes, Jeffrey W., Balazs, Amber Y. S., Barratt, Derek, Bista, Michal, Chuba, Matthew D., Cosulich, Sabina, Critchlow, Susan E., Degorce, Sébastien L., Di Fruscia, Paolo, Edmondson, Scott D., Embrey, Kevin J., Fawell, Stephen, Ghosh, Avipsa, Gill, Sonja J., Gunnarsson, Anders, Hande, Sudhir M., Heightman, Tom D., Hemsley, Paul, Illuzzi, Giuditta, Lane, Jordan, Larner, Carrie J.B., Leo, Elisabetta, Liu, Lina, Madin, Andrew, McWilliams, Lisa, O’Connor, Mark J., Orme, Jonathan P., Pachl, Fiona, Packer, Martin J., Pei, Xiaohui, Pike, Andy, Schimpl, Marianne, She, Hongyao, Staniszewska, Anna D., Talbot, Verity, Underwood, Elizabeth, Varnes, Jeffrey G., Xue, Lin, Yao, Tieguang, Zhang, Ke, Zhang, Andrew X., Zheng, Xiaolan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:PARP inhibitors have attracted considerable interest in drug discovery due to the clinical success of first-generation agents such as olaparib, niraparib, rucaparib, and talazoparib. Their success lies in their ability to trap PARP to DNA; however, first-generation PARP inhibitors were not strictly optimized for trapping nor for selectivity among the PARP enzyme family. Previously we described the discovery of the second-generation PARP inhibitor AZD5305, a selective PARP1-DNA trapper. AZD5305 maintained the antitumor efficacy of first-generation PARP inhibitors while exhibiting lower hematological toxicity. Recently, there has been interest in central nervous system (CNS)-penetrant PARP inhibitors for CNS malignancies and other neurological conditions; however, AZD5305 is not CNS penetrant. Herein we describe the discovery and optimization of a series of CNS-penetrant, PARP1-selective inhibitors and PARP1-DNA trappers, culminating in the discovery of AZD9574, a compound that maintains the PARP1 selectivity of AZD5305 with improved permeability, reduced efflux, and increased CNS penetration.
ISSN:0022-2623
1520-4804
1520-4804
DOI:10.1021/acs.jmedchem.4c01725