Operando Investigation of Zr Doping in NMC811 Cathode for High Energy Density Lithium Ion Batteries
LiNi0.8Mn0.1Co0.1O2 (NMC811) is one of the most promising cathode materials for high energy density Li-ion batteries (LiBs). However, NMC811 suffers from capacity fading during electrochemical cycling because of its structure instability at voltages > 4.2 V vs Li|Li+ due to the known hexagonal H2...
Gespeichert in:
Veröffentlicht in: | ChemSusChem 2024-12, p.e202401796 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | LiNi0.8Mn0.1Co0.1O2 (NMC811) is one of the most promising cathode materials for high energy density Li-ion batteries (LiBs). However, NMC811 suffers from capacity fading during electrochemical cycling because of its structure instability at voltages > 4.2 V vs Li|Li+ due to the known hexagonal H2 → H3 phase transition. Zr doping has proven to be effective in enhancing electrochemical performances of the NMC811. In depth investigations are conducted through operando x-ray diffraction (XRD) and ex-situ x-ray absorption spectroscopy (XAS) measurements to mechanistically understand the benefits of Zr-doping in a NMC811 material when doped during the co-precipitation step. Herein, Zr-doping in NMC811 reduces the formation of the detrimental H3 phase and mitigates the transition metal dissolution upon cycling. |
---|---|
ISSN: | 1864-564X 1864-564X |
DOI: | 10.1002/cssc.202401796 |