Monolayer Magnetic Metal with Scalable Conductivity

2D magnets have emerged as a class of materials highly promising for studies of quantum phenomena and applications in ultra-compact spintronics. Current research aims at design of 2D magnets with particular functional properties. A formidable challenge is to produce metallic monolayers: the material...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2024-12, p.e2412321
Hauptverfasser: Parfenov, Oleg E, Averyanov, Dmitry V, Sokolov, Ivan S, Mihalyuk, Alexey N, Kondratev, Oleg A, Taldenkov, Alexander N, Tokmachev, Andrey M, Storchak, Vyacheslav G
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:2D magnets have emerged as a class of materials highly promising for studies of quantum phenomena and applications in ultra-compact spintronics. Current research aims at design of 2D magnets with particular functional properties. A formidable challenge is to produce metallic monolayers: the material landscape of layered magnetic systems is strongly dominated by insulators; rare metallic magnets, such as Fe GeTe , become insulating as they approach the monolayer limit. Here, electron transport measurements demonstrate that the recently discovered 2D magnet GdAlSi - graphene-like AlSi layers coupled to layers of Gd atoms - remains metallic down to a single monolayer. Band structure analysis indicates the material to be an electride, which may stabilize the metallic state. Remarkably, the sheet conductance of 2D GdAlSi is proportional to the number of monolayers - a manifestation of scalable conductivity. The GdAlSi layers are epitaxially integrated with silicon, facilitating applications in electronics.
ISSN:0935-9648
1521-4095
1521-4095
DOI:10.1002/adma.202412321