Biodegradable alginate hydrogel incorporated of selenide polysaccharide to improve slow-release and selenium enrichment of vegetable
Selenium fertilizers (Se-fertilizers) were applied to promote the growth of plant and improve the Se content in crops. However, traditional Se-fertilizers have low utilization efficiency of Se due to adsorption or leaching. Herein, Alg-g-Polyacrylamide/Se orange peel polysaccharide (AP/SeOPP) hydrog...
Gespeichert in:
Veröffentlicht in: | International journal of biological macromolecules 2024-12, Vol.288, p.138498, Article 138498 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Selenium fertilizers (Se-fertilizers) were applied to promote the growth of plant and improve the Se content in crops. However, traditional Se-fertilizers have low utilization efficiency of Se due to adsorption or leaching. Herein, Alg-g-Polyacrylamide/Se orange peel polysaccharide (AP/SeOPP) hydrogel was prepared and characterized by FT-IR, SEM, XRD and XPS. The swelling behaviors of AP8/SeOPP3 in different saline solution were investigated. Meanwhile, the rheological properties of AP8/SeOPP3 were studied. The water-retention ratio of AP8/SeOPP3 at −0.08 MPa were 84.9 %. The water-holding capacities of soil with AP8/SeOPP3 (1 wt%) was 33.8 % at 20th day. The pot experiments showed that the Se content of Chinese cabbage treated by AP8/SeOPP3 of 2 wt% was 2.67 mg/kg. Compared with control treatment, the average stem height and fresh weight of Chinese cabbage fertilizered by AP8/SeOPP3 were higher than that treated by AP8 hydrogel. The release mechanism indicated that there was the ion exchange between Cl−, PO43−, SO42− in sandy soil and SeO32− in AP8/SeOPP3 hydrogel. This work provides a feasible strategy for promoting vegetable growth and achieving Se-enrichment of crops in arid and semi-arid region. |
---|---|
ISSN: | 0141-8130 1879-0003 1879-0003 |
DOI: | 10.1016/j.ijbiomac.2024.138498 |