A Highly Active Molybdenum Carbide Catalyst with Dynamic Carbon Flux for Reverse Water-Gas Shift Reaction
Molybdenum carbide has been reported as an efficient and stable catalyst for reverse water-gas shift (RWGS) reaction. The conventional understanding of the mechanism suggests domination of the surface phenomena, with only surface or subsurface layers partaking in the catalytic cycle. In this study,...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie International Edition 2024-12, p.e202418645 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Molybdenum carbide has been reported as an efficient and stable catalyst for reverse water-gas shift (RWGS) reaction. The conventional understanding of the mechanism suggests domination of the surface phenomena, with only surface or subsurface layers partaking in the catalytic cycle. In this study, we presented a highly active MoC catalyst from carburization process, which showed a mass-specific reaction rate over 260 μm
with dynamic carbon flux in the bulk phase of the catalyst. Through Isotopic Temperature-Programmed Reaction (ITPR) analysis and Environmental Transmission Electron Microscopy (ETEM), we discerned dynamic carbon flow circulating between the α-MoC bulk phase and the gas phase reactants under the RWGS reaction atmosphere. This circulation, essential to maintaining the structural stability of the metastable α-MoC and its ultra-high reactivity, is accompanied by thorough carbon component exchange among the bulk, the surface and the gas-phase reactants during the reaction process. |
---|---|
ISSN: | 1433-7851 1521-3773 1521-3773 |
DOI: | 10.1002/anie.202418645 |