Docosahexaenoic Acid Promotes Eryptosis and Haemolysis through Oxidative Stress/Calcium/Rac1 GTPase Signalling

Docosahexaenoic acid (DHA) is an omega-3 polyunsaturated fatty acid with promising anticancer potential. Anaemia is a frequent adverse effect of anticancer treatment caused in part by eryptosis and haemolysis. Thus, it is important to investigate the role of DHA in red blood cell (RBC) death. RBCs w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Folia biologica 2024, Vol.70 (3), p.179
Hauptverfasser: Alharthy, Feryal H, Alsughayyir, Jawaher, Alfhili, Mohammad A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Docosahexaenoic acid (DHA) is an omega-3 polyunsaturated fatty acid with promising anticancer potential. Anaemia is a frequent adverse effect of anticancer treatment caused in part by eryptosis and haemolysis. Thus, it is important to investigate the role of DHA in red blood cell (RBC) death. RBCs were treated with anticancer concentrations (10-100 μM) of DHA under different physiological conditions, and fluorescence-assisted cell sorting was employed to measure eryptotic markers. Cell membrane scrambling was detected by annexin-V-FITC labelling, cytoplasmic Ca2+ by Fluo4/AM, cell size by forward scatter (FSC), and oxidative stress by H2DCFDA. Haemolytic markers were also assayed by photometric methods. DHA caused significant phospholipid scrambling with Ca2+ accumulation, loss of cellular volume, and oxidative stress. These changes were associated with dacrocyte formation, as revealed by electron microscopy. Moreover, DHA exhibited a dual effect on membrane integrity: it was haemolytic under isotonic conditions and anti-haemolytic in hypotonic environments. Importantly, inhibition of Rac1 GTPase activity with NSC23766 significantly reduced DHA-mediated haemolysis, as did co-administration of either sucrose or polyethylene glycol 8,000. Conversely, the presence of 125 mM KCl and urea without extracellular Ca2+ significantly exacerbated DHA toxicity. In conclusion, this is the first report that identifies key biochemical mechanisms underlying the cytotoxic effects of DHA in RBCs, promoting further development and validation of DHA in anticancer therapy.
ISSN:0015-5500
DOI:10.14712/fb2024070030179