Enhancing protective immunity against SARS-CoV-2 with a self-amplifying RNA lipid nanoparticle vaccine
RNA-based vaccines against SARS-CoV-2 have demonstrated promising protective immunity against the global COVID-19 epidemic. Enhancing the intensity and duration of mRNA antigen expression is anticipated to markedly boost antiviral immune responses. Self-amplifying RNA (saRNA) represents a next-gener...
Gespeichert in:
Veröffentlicht in: | Journal of controlled release 2024-12, Vol.378, p.250 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | RNA-based vaccines against SARS-CoV-2 have demonstrated promising protective immunity against the global COVID-19 epidemic. Enhancing the intensity and duration of mRNA antigen expression is anticipated to markedly boost antiviral immune responses. Self-amplifying RNA (saRNA) represents a next-generation platform for RNA-based vaccines, amplifying transcripts in situ to augment the expression of encoded immunogens. Here, we develop a saRNA nanovaccine, formulated with a mutated saRNA encoding the receptor-binding domain (RBD) of the SARS-CoV-2 spike glycoprotein, encapsulated within a lipid nanoparticle (LNP-saRNA-RBD). This LNP-saRNA vaccine platform enables efficient delivery of saRNA-RBD, inducing enhanced and prolonged expression of the RBD antigen. LNP-saRNA-RBD vaccination stimulated the generation of antigen-specific T cells, promoting their differentiation into a long-lived effector memory phenotype. Immunization with LNP-saRNA-RBD induced a germinal center response in draining lymph nodes, leading to the production of anti-RBD IgG antibodies with the ability to neutralize SARS-CoV-2 pseudovirus. Furthermore, prime-boost immunizations with LNP-saRNA-RBD conferred protection to mice against SARS-CoV-2 challenge by suppressing viral infection and replication, as well as pulmonary inflammatory responses and associated damage. Taken together, these findings provide strong support for advancing the development of LNP-saRNA-RBD as a safe and efficacious vaccine candidate against SARS-CoV-2 infection.
[Display omitted]
•LNP-saRNA-RBD vaccine enhances and prolongs SARS-CoV-2 antigen expression•LNP-saRNA-RBD elicits robust T and B cell responses, with a durable memory phenotype•Prime-boost LNP-saRNA-RBD confers strong protection in SARS-CoV-2 challenged mice•LNP-saRNA-RBD reduces lung viral load and inflammation, minimizing lung injury•LNP-saRNA-RBD shows safe in vivo profile, with no systemic immunotoxicity detected. |
---|---|
ISSN: | 0168-3659 1873-4995 1873-4995 |
DOI: | 10.1016/j.jconrel.2024.12.003 |