Plasma-induced Fe-doped zeolitic imidazolate framework-8 derived P-Fe-N3C for enhanced phenol degradation

[Display omitted] Plasma-synergistic catalysis is considered an effective method for degrading aromatic organic pollutants in water. However, the underlying synergistic catalytic mechanism between plasma and catalysts remains poorly understood. Here, we propose a plasma-metal organic frameworks (MOF...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of colloid and interface science 2025-03, Vol.682, p.643-652
Hauptverfasser: Lu, Ke, Xia, Mingyue, Chen, Chaojun, Yuan, Hao, Liang, Jianping, Wang, Hongli, Zheng, Zhi, Liu, Qinghua, Gao, Junfeng, Yang, Dezheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:[Display omitted] Plasma-synergistic catalysis is considered an effective method for degrading aromatic organic pollutants in water. However, the underlying synergistic catalytic mechanism between plasma and catalysts remains poorly understood. Here, we propose a plasma-metal organic frameworks (MOFs) synergistic strategy to investigate the mechanism of plasma-synergistic catalysts for phenol degradation. The results show that Fe-doped Zeolitic Imidazolate Framework-8 (Fex-ZIF8, x = 0, 0.1, 0.2, 0.4) undergoes the plasma-induced transformation into an Fe-N3C structure (P-Fe-N3C), leading to a 4.5-fold enhancement in the phenol degradation rate compared to only plasma discharge. Density functional theory (DFT) calculations indicate that the plasma-induced structural transformation of Fex-ZIF8 promotes the redistribution of point charges and space charges around the Fe center, thereby lowering the activation energy barrier in the rate-determining step (*C6H4(OH)2). These findings not only provide theoretical support for the degradation of water pollutants via plasma-synergistic catalysts but also offer a novel strategy for constructing MOFs-derived materials.
ISSN:0021-9797
1095-7103
1095-7103
DOI:10.1016/j.jcis.2024.11.230