A length-band fluorescence-based paper analytical device for detecting dipicolinic acid via ofloxacin complexation with Cu2

Dipicolinic acid (DPA) is a key biomarker of bacterial spores. In this study, we present a novel distance-based paper analytical device (d-PAD) for the fluorescence sensing of DPA. The detection mechanism relies on the complexation of ofloxacin (OFL) with Cu2+ ions, where Cu2+ quenches the fluoresce...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analyst (London) 2024-12
Hauptverfasser: Nghia, Nguyen Ngoc, The Huy, Bui, Hieu, Nguyen Huu, Kim Phuong, Nguyen Thi, Lee, Yong-Ill
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Dipicolinic acid (DPA) is a key biomarker of bacterial spores. In this study, we present a novel distance-based paper analytical device (d-PAD) for the fluorescence sensing of DPA. The detection mechanism relies on the complexation of ofloxacin (OFL) with Cu2+ ions, where Cu2+ quenches the fluorescence of OFL via static quenching. Upon the introduction of DPA, it interacts with the OFL-Cu2+ complex, resulting in an enhanced fluorescence signal from OFL. The assay demonstrated a limit of detection (LOD) of 0.08 μM over a range of 0.6-120 μM, as measured using a spectrofluorometer. The d-PAD was designed for efficient reagent transport through capillary action on paper substrates, allowing for rapid on-site DPA analysis without requiring advanced laboratory equipment. The length of the fluorescent bands on the d-PADs was proportional to the concentration of DPA, providing a simple and effective readout method. With a sensitivity of 0.6 μM, the device shows a strong response to varying DPA concentrations. This distance-based platform offers a straightforward and quantitative approach to result interpretation, making it a promising tool for detecting bacterial spores in real samples. The development and optimization of this paper-based microfluidic assay represent a significant step forward in portable diagnostic technologies.Dipicolinic acid (DPA) is a key biomarker of bacterial spores. In this study, we present a novel distance-based paper analytical device (d-PAD) for the fluorescence sensing of DPA. The detection mechanism relies on the complexation of ofloxacin (OFL) with Cu2+ ions, where Cu2+ quenches the fluorescence of OFL via static quenching. Upon the introduction of DPA, it interacts with the OFL-Cu2+ complex, resulting in an enhanced fluorescence signal from OFL. The assay demonstrated a limit of detection (LOD) of 0.08 μM over a range of 0.6-120 μM, as measured using a spectrofluorometer. The d-PAD was designed for efficient reagent transport through capillary action on paper substrates, allowing for rapid on-site DPA analysis without requiring advanced laboratory equipment. The length of the fluorescent bands on the d-PADs was proportional to the concentration of DPA, providing a simple and effective readout method. With a sensitivity of 0.6 μM, the device shows a strong response to varying DPA concentrations. This distance-based platform offers a straightforward and quantitative approach to result interpretation, making it a promising tool for d
ISSN:1364-5528
1364-5528
DOI:10.1039/d4an01393j