The dynamics of hematopoiesis over the human lifespan
Over a lifetime, hematopoietic stem cells (HSCs) adjust their lineage output to support age-aligned physiology. In model organisms, stereotypic waves of hematopoiesis have been observed corresponding to defined age-biased HSC hallmarks. However, how the properties of hematopoietic stem and progenito...
Gespeichert in:
Veröffentlicht in: | Nature methods 2024-12 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Over a lifetime, hematopoietic stem cells (HSCs) adjust their lineage output to support age-aligned physiology. In model organisms, stereotypic waves of hematopoiesis have been observed corresponding to defined age-biased HSC hallmarks. However, how the properties of hematopoietic stem and progenitor cells change over the human lifespan remains unclear. To address this gap, we profiled individual transcriptome states of human hematopoietic stem and progenitor cells spanning gestation, maturation and aging. Here we define the gene expression networks dictating age-specific differentiation of HSCs and the dynamics of fate decisions and lineage priming throughout life. We additionally identifiy and functionally validate a fetal-specific HSC state with robust engraftment and multilineage capacity. Furthermore, we observe that classification of acute myeloid leukemia against defined transcriptional age states demonstrates that utilization of early life transcriptional programs associates with poor prognosis. Overall, we provide a disease-relevant framework for heterochronic orientation of stem cell ontogeny along the real time axis of the human lifespan. |
---|---|
ISSN: | 1548-7091 1548-7105 1548-7105 |
DOI: | 10.1038/s41592-024-02495-0 |