Iron-responsive nanoparticle-loaded bilayer dissolving microneedles for selective and controlled transdermal delivery of deferasirox in β-thalassemia major treatment

Deferasirox (DFX) is widely used to manage β-thalassemia major (β-TM), but its oral administration is limited by low bioavailability and side effects. To address these challenges, we developed iron-responsive nanoparticles (NP-IR) of DFX using ferrocene as the iron-responsive material, incorporated...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Colloids and surfaces, B, Biointerfaces B, Biointerfaces, 2024-11, Vol.247, p.114416, Article 114416
Hauptverfasser: Permana, Andi Dian, Maharani, Sitti Nurkhadijah, Aziz, Anugerah Yaumil Ramadhani, Ramadhany, Indianty Dwi, Himawan, Achmad, Habibie, Asri, Rangga Meidianto, Amir, Muhammad Nur, Masadah, Rina
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Deferasirox (DFX) is widely used to manage β-thalassemia major (β-TM), but its oral administration is limited by low bioavailability and side effects. To address these challenges, we developed iron-responsive nanoparticles (NP-IR) of DFX using ferrocene as the iron-responsive material, incorporated into dissolving microneedles (DMN) for transdermal delivery. The NP-IR measured 276.67 ± 7.80 nm with an entrapment efficiency of 47.54 ± 3.68 %. FTIR analysis confirmed DFX incorporation, while reduced crystallinity suggested enhanced formulation. In vitro testing demonstrated controlled DFX release in the presence of iron, highlighting its targeted responsiveness. The DMN containing NP-IR, composed of polyvinyl pyrrolidone and polyvinyl alcohol, showed less than 10 % height reduction and successfully penetrated the fourth layer of Parafilm®, simulating human skin penetration. Ex vivo studies validated effective DFX delivery through rat skin with high iron selectivity, while in vivo experiments in an iron overload rat model revealed sustained, controlled release, outperforming oral administration and potentially ehancing DFX efficacy in β-TM treatment.
ISSN:0927-7765
1873-4367
1873-4367
DOI:10.1016/j.colsurfb.2024.114416