Decoding complex transport patterns in flow-induced autologous chemotaxis of multicellular systems
Cell migration via autologous chemotaxis in the presence of interstitial fluid flow is important in cancer metastasis and embryonic development. Despite significant recent progress, our understanding of flow-induced autologous chemotaxis of multicellular systems remains poor. The literature presents...
Gespeichert in:
Veröffentlicht in: | Biomechanics and modeling in mechanobiology 2024-12 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Cell migration via autologous chemotaxis in the presence of interstitial fluid flow is important in cancer metastasis and embryonic development. Despite significant recent progress, our understanding of flow-induced autologous chemotaxis of multicellular systems remains poor. The literature presents inconsistent findings regarding the effectiveness of collective autologous chemotaxis of densely packed cells under interstitial fluid flow. Here, we present a high-fidelity computational model to analyze the migration of multicellular systems performing autologous chemotaxis in the presence of interstitial fluid flow. Our simulations show that the details of the complex transport dynamics of the chemoattractant and fluid flow patterns that occur in the extracellular space, previously overlooked, are essential to understand this cell migration mechanism. We find that, although flow-induced autologous chemotaxis is a robust migration mechanism for individual cells, the cell-cell interactions that occur in multicellular systems render autologous chemotaxis an inefficient mechanism of collective cell migration. Our results offer new perspectives on the potential role of autologous chemotaxis in the tumor microenvironment, where fluid flow is an important modulator of transport. |
---|---|
ISSN: | 1617-7959 1617-7940 1617-7940 |
DOI: | 10.1007/s10237-024-01905-8 |