Molecular Networks as Strategy for Dereplication of Steroidal Alkaloids of Herbarium Samples of Solanum jabrense Agra and M. Nee, an Endemic and Unexplored Species

Solanum jabrense is an endemic species from Brazil, distributed in the phytogeographic domains of the Caatinga and Atlantic Forest, in the states of Northeast. Solanum L. species have great economic importance not only because they are used in human food, but also because they present several second...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry & biodiversity 2024-12, p.e202402513
Hauptverfasser: Lima E Silva, Anauara, de Medeiros Brito, Thiago Araújo, Agra, Maria de Fátima, Sobral da Silva, Marcelo, Tavares, Josean Fechine
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Solanum jabrense is an endemic species from Brazil, distributed in the phytogeographic domains of the Caatinga and Atlantic Forest, in the states of Northeast. Solanum L. species have great economic importance not only because they are used in human food, but also because they present several secondary metabolites, especially glycosylated steroidal alkaloids, giving them medicinal properties. Recently, dry herbarium specimens have been used to identify metabolites of interest preserved even after years of storage, using a simple and fast method of extraction and analysis by liquid chromatography (LC) coupled to mass spectrometry (MS). Dereplication techniques aided by molecular networks (MNs) were used to analyze the chemical composition from samples of S. jabrense herbarium specimens and to identify chemical markers and bioactive molecules with potential medicinal use. From the LC-MS/MS dataset of the crude extracts and a standard (solasodine), an MN was generated that resulted in the dereplication of 19 spirosolane-type alkaminas. Our results suggest that dereplication using fragments of dried Solanum specimens is a quick tool to identify potential conserved metabolites, being useful not only for chemotaxonomy and metabolomic but also for the discovery of new molecules in natural products.
ISSN:1612-1880
1612-1880
DOI:10.1002/cbdv.202402513