Improved hydrogen production performance of S-scheme Nb2O5/La2O3 photocatalyst

Addressing the intricate challenge of simultaneously improving the separation of photoinduced electron-hole pairs and enhancing redox potentials to produce hydrogen fuel demands the rational design of S-scheme heterojunction photocatalysts. Herein, we use a hydrothermal process to integrate Nb2O5 na...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Dalton transactions : an international journal of inorganic chemistry 2024-12
Hauptverfasser: Ahmad, Irshad, AlFaify, Salem A., Alanezi, Khaled M M, Alfaifi, Mohammed Qasem, Abduljawad, Marwan, Liu, Yuyu
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Addressing the intricate challenge of simultaneously improving the separation of photoinduced electron-hole pairs and enhancing redox potentials to produce hydrogen fuel demands the rational design of S-scheme heterojunction photocatalysts. Herein, we use a hydrothermal process to integrate Nb2O5 nanorods and La2O3 nanosheets to design an Nb2O5/La2O3S-scheme system for photocatalytic hydrogen production under simulated sunlight illumination. Notably, the optimal hydrogen production performance ofNb2O5/La2O3 (the molar ratio of Nb2O5 to La2O3 is 0.4% and denoted as 0.4NbO-LaO) reached 2175 μmol h1g1, which is 14.5 and 15.9 times superior in comparison to pure Nb2O5 and La2O3, respectively. In addition, the repeated experiments verify the strong stability of the 0.4NbO-LaO photocatalyst. The S-scheme mechanism, verified by the in-situ XPS method, plays a crucial role in producing hydrogen with a significantly higher yield than pure Nb2O5 and La2O3. This design approach facilitates an innovative opening to widen the scope of S-scheme photocatalysts for solar fuel production.
ISSN:1477-9226
1477-9234
1477-9234
DOI:10.1039/D4DT02913E