Polypeptide-Folded Artificial Ferroprotein Promotes Ferroptosis in Multiple Tumor Cells
Although the current nanozymes, such as Fe3O4 nanoparticles, exhibit biocatalytic activities, they dramatically differ from natural enzymes, lacking a degradable organic framework and an intrinsically flexible structure. Single-chain folding of a synthetic polypeptide by metal coordination can mimic...
Gespeichert in:
Veröffentlicht in: | Biomacromolecules 2025-01, Vol.26 (1), p.288-295 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Although the current nanozymes, such as Fe3O4 nanoparticles, exhibit biocatalytic activities, they dramatically differ from natural enzymes, lacking a degradable organic framework and an intrinsically flexible structure. Single-chain folding of a synthetic polypeptide by metal coordination can mimic metalloproteins more similarly. A triblock PEG-polypeptide copolymer, poly(ethylene glycol)-b-poly(but-3-yn-1-yl glutamate)-b-poly(tert-butyl glutamate) [EG113 -b-(Glu-yne)48 -b-(Glu-tBu)61], was synthesized by NCA polymerization. The alkyne side groups on the central Glu-yne block were intramolecularly cross-linked by Fe3(CO)12 coordination. After thermolysis, the CO ligand was completely removed, yielding an artificial ferroprotein (AFP) with amorphous Fe/FeO x nanoclusters locked within the cross-linked region. While the parent triblock copolypeptide displayed negligible cytotoxicity on human normal cell lines (BEAS-2B and LO2), AFPs induced evident ferroptosis on four different cancer cell lines (PANC-1, HT1080, MCF-7, and A549) even with a low Fe content at 1.6 wt %. |
---|---|
ISSN: | 1525-7797 1526-4602 1526-4602 |
DOI: | 10.1021/acs.biomac.4c01112 |