Applications of a biocompatible alginate/pericardial fluid-based hydrogel for the production of a bioink in tissue engineering
Enhancing the biocompatibility of biomaterials is a critical aspect of tissue engineering and regenerative medicine. Advances in 3D bioprinting technology, blending natural and synthetic materials for the production of bioink, offer new opportunities to develop highly biocompatible materials that ca...
Gespeichert in:
Veröffentlicht in: | Biotechnology and applied biochemistry 2024-12 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Enhancing the biocompatibility of biomaterials is a critical aspect of tissue engineering and regenerative medicine. Advances in 3D bioprinting technology, blending natural and synthetic materials for the production of bioink, offer new opportunities to develop highly biocompatible materials that can closely mimic the native tissue environment. In this study, we used pericardial fluid structure (PFS)-based material together with alginate to mimic the extracellular matrix (ECM) and produce a bioink material. Thus, blended alginate with PFS material and MC3T3-E1 pre-osteoblast cell-laden hydrogels characterized by comparing each other, especially alginate hydrogels, and evaluated in terms of biocompatibility for tissue engineering applications. According to the rheological analysis results, all hydrogel groups A, A-PFS (150 mg), and A-PFS (1:1) had viscoelastic properties. Mechanical tests showed that the A-PFS (1:1) hydrogel had the most strength properties. Additionally, the viscosity values of the hydrogel solutions were in an applicable range for use in 3D bioprinters. It was also found out that PFS increased the biocompatibility of alginate-based bioink, in terms of cell proliferation and differentiation. Overall, these findings suggest that alginate and pericardial fluid-based materials can be successfully used for bioink production. The resulting hydrogels exhibit viscoelastic properties, appropriate viscosity for 3D bioprinting, and support cell viability, proliferation, and osteogenic differentiation. This research has the potential not only to produce bioink but also to produce injectable hydrogels and drug delivery systems, which can become biocompatible materials that can be used for tissue engineering and regenerative medicine applications. |
---|---|
ISSN: | 1470-8744 1470-8744 |
DOI: | 10.1002/bab.2697 |