Functional Efficacy of Tissue-Engineered Small-Diameter Nanofibrous Polyurethane Vascular Grafts Surface-Modified by Methacrylated Sulfated Alginate in the Rat Abdominal Aorta

Improved design to imitate natural vascular scaffolds is critical in vascular tissue engineering (VTE). Smooth muscle cells originating from surrounding tissues require larger pore sizes relative to those of endothelial progenitor cells found in the bloodstream. Furthermore, biofunctionalized scaffo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2024-12, Vol.16 (49), p.67255-67274
Hauptverfasser: Amiri Heydari, Hamid, Kazemi Ashtiani, Mohammad, Mostafaei, Farhad, Alipour Choshali, Mahmoud, Shiravandi, Ayoub, Rajabi, Sarah, Daemi, Hamed
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Improved design to imitate natural vascular scaffolds is critical in vascular tissue engineering (VTE). Smooth muscle cells originating from surrounding tissues require larger pore sizes relative to those of endothelial progenitor cells found in the bloodstream. Furthermore, biofunctionalized scaffolds mimic the microenvironment, cellular function, and tissue morphogenesis. Here, we fabricated macroporous and nanofibrous polyurethane (PU) bilayer tissue-engineered vascular grafts (TEVGs) by a salt-leaching method to achieve high porosities up to 30 μm. These grafts have a low porosity on the luminal side and a high porosity on the abluminal side. To enhance their properties, we surface-modified the PU scaffolds using heparin-mimicking methacrylated sulfated alginate (PU-MSA). We then evaluated these tubular scaffolds for their anticoagulation effect, protein adsorption, and cell attachment in vitro. The results revealed that TEVGs modified with sulfated alginate (PU-MSA) exhibited better anticoagulation (25 ± 1 min) and higher VEGF protein adsorption (75 ± 5 ng/mL) compared to other scaffolds. Moving to in vivo testing, we examined the TEVGs in a rat model for either 1 or 5 months. Through ultrasonication and various histological analyses, we assessed the functionality and biocompatibility of the TEVGs. Notably, the PU-MSA scaffold created a microenvironment conducive to cell homing and regeneration in the field of VTE.
ISSN:1944-8244
1944-8252
1944-8252
DOI:10.1021/acsami.4c13925