A milestone for the solution to the lattice sphere covering problem in dimension n = 6

The complete classification of (primitive, generic) parallelohedra in a given dimension is a challenging computational task. Nearly 50 years have passed since the classification for the last dimension, n = 5, was completed. One application of such a classification is in solving the lattice sphere co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta crystallographica. Section A, Foundations and advances Foundations and advances, 2025-01
1. Verfasser: Vallentin, Frank
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The complete classification of (primitive, generic) parallelohedra in a given dimension is a challenging computational task. Nearly 50 years have passed since the classification for the last dimension, n = 5, was completed. One application of such a classification is in solving the lattice sphere covering problem for the corresponding dimension. The paper by Dutour Sikirić & van Woerden [Acta Cryst. (2025), A81, https://doi.org/10.1107/S2053273324010143] marks a milestone in the classification effort for dimension n = 6. It provides a complete classification of all primitive iso-edge domains; here primitive parallelohedra are identified based on their facet vectors.
ISSN:2053-2733
2053-2733
DOI:10.1107/S2053273324011513