Thermal degradation kinetics and purification of C-phycocyanin from thermophilic and mesophilic cyanobacteria
The natural blue colorant C-phycocyanin (C-PC) has many potential applications but its poor heat stability limits its commercial use. This study compares the production and thermal stability of C-PC from two cyanobacteria: the thermophilic Thermosynechococcus sp. TUBT-T01 and the mesophilic Synechoc...
Gespeichert in:
Veröffentlicht in: | Journal of biotechnology 2025-02, Vol.398, p.76-86 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The natural blue colorant C-phycocyanin (C-PC) has many potential applications but its poor heat stability limits its commercial use. This study compares the production and thermal stability of C-PC from two cyanobacteria: the thermophilic Thermosynechococcus sp. TUBT-T01 and the mesophilic Synechococcus cedrorum TISTR8589. Thermosynechococcus sp. produced nearly 1.9-fold more C-PC than S. cedrorum. Batch adsorption using a chromatographic cationic ion exchange resin (Streamline Direct HST1) was used to effectively purify the C-PC. The equilibrium adsorption capacity (Qeq) of the resin for C-PC was the highest at pH 5. At this pH, the Qeq for the thermophilic C-PC was 5.5 ± 0.1 mg mL⁻¹ , whereas for the mesophilic C-PC it was 1.5 ± 0.2 mg mL⁻¹ . Purification increased the concentration of the thermophilic C-PC by 5.9-fold, and that of mesophilic C-PC by 4.2-fold. The purity ratios of the final products from the two cyanobacteria were similar at ∼2.2. At 60 °C and pH 7, the C-PC of Thermosynechococcus sp. had ∼12-times longer half-life than the mesophilic C-PC; however, the productivity of the thermophilic C-PC was comparatively low because of a low biomass productivity of Thermosynechococcus sp.
[Display omitted]
•A 1-step adsorption effectively purified cyanobacterial C-phycocyanin (C-PC).•A purity ratio exceeding 2 could be achieved by a 1-step batch adsorption.•Heat stability of C-PC of thermophilic and mesophilic species was compared.•C-PC of a hot-spring Thermosynechococcus sp. was highly heat stable.•Half-life of the stable C-PC was ∼12-fold better than the benchmark C-PC. |
---|---|
ISSN: | 0168-1656 1873-4863 1873-4863 |
DOI: | 10.1016/j.jbiotec.2024.11.018 |