Total Body PET/CT: Clinical Value and Future Aspects of Quantification in Static and Dynamic Imaging

Total body (TB) Positron Emission Tomography (PET) / Computed Tomography (CT) scanners have revolutionized nuclear medicine by enabling whole-body imaging in a single bed position.1 This review assesses the physical and clinical value of TB-PET/CT, with a focus on the advancements in both static and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Seminars in nuclear medicine 2025-01, Vol.55 (1), p.98-106
Hauptverfasser: Rathod, Narendra, Jutidamrongphan, Warissara, Bosbach, Wolfram Andreas, Chen, Yizhou, Penner, Jan Luca, Sari, Hasan, Zeimpekis, Konstantinos, Montes, Alejandro López, Moskal, Pawel, Stepien, Ewa, Shi, Kuangyu, Rominger, Axel, Seifert, Robert
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Total body (TB) Positron Emission Tomography (PET) / Computed Tomography (CT) scanners have revolutionized nuclear medicine by enabling whole-body imaging in a single bed position.1 This review assesses the physical and clinical value of TB-PET/CT, with a focus on the advancements in both static and dynamic imaging, as well as the evolving quantification techniques. The significantly enhanced sensitivity of TB scanners can reduce radiation exposure and scan time, offering improved patient comfort and making it particularly useful for pediatric imaging and various other scenarios. Shorter scan times also decrease motion artifacts, leading to higher-quality images and better diagnostic accuracy. Dynamic PET imaging with TB scanners extends these advantages by capturing temporal changes in tracer uptake over time, providing real-time insights into both structural and functional assessment, and promoting the ability to monitor disease progression and treatment response. We also present CT-free attenuation correction methods that utilize the increased sensitivity of TB-PET as a potential improvement for dynamic TB-PET protocols. In static imaging, emerging quantification techniques such as dual-tracer PET using TB scanners allow imaging of two biological pathways, simultaneously, for a more comprehensive assessment of disease. In addition, positronium imaging, a novel technique utilizing positronium lifetime measurements, is introduced as a promising aspect for providing structural information alongside functional quantification. Finally, the potential of expanding clinical applications with the increased sensitivity of TB-PET/CT scanners is discussed.
ISSN:0001-2998
1558-4623
1558-4623
DOI:10.1053/j.semnuclmed.2024.11.004