Application of ionic wind in sampling of bioaerosols: collection efficiency, ROS/RNS production, and viability assessment
Studies of bioaerosol particles in airborne particulate matter have revealed their omnipresence. Therefore, spot-on sampling and identification are pivotal for assessing exposure risks. Corona discharge-based sampling has been utilized for the bioaerosol sampling. However, one of the issues regardin...
Gespeichert in:
Veröffentlicht in: | Journal of hazardous materials 2025-02, Vol.483, p.136612, Article 136612 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Studies of bioaerosol particles in airborne particulate matter have revealed their omnipresence. Therefore, spot-on sampling and identification are pivotal for assessing exposure risks. Corona discharge-based sampling has been utilized for the bioaerosol sampling. However, one of the issues regarding corona discharge-based samplers is the production of reactive oxygen species (ROS) and reactive nitrogen species (RNS), which can alter the viability of bioaerosols and damage nucleic acids. Herein, the use of ionic wind as a possible alternative to reduce ROS/RNS damage to microorganisms was studied. An aerosol-to-hydrosol (ATH) ionic wind (IW) sampler was developed and compared with an ATH electrostatic precipitation (ESP) sampler having the exact physical dimensions in terms of collection efficiency, ROS/RNS production, ozone generation, viability of collected biological particles, and damage to the nucleic acids of the particles. Overall, the ESP sampler showed a higher collection efficiency and less damage to the reproducibility of the sampled bioaerosols than the IW sampler. However, polymerase chain reaction analysis of the sampled bioaerosol nucleic acids showed similar results for both devices. The IW sampler has the potential for both bioaerosol sampling and deactivation, as well as for scenarios requiring neutralized sampled particles or particle deposition on any nonmetallic surface.
[Display omitted]
•Collection, culturability, and DNA damage were compared between IW and ESP samplers.•ESP sampler was better than IW sampler in collection efficiency (89 % vs 55 %).•ESP sampler was better than IW sampler in culturability (4.9E+7 vs 1.7E+3 CFU/mL).•PCR analysis showed low DNA damage, enabling bacterial detection with IW sampler.•Collection, inculturability, and DNA damage increased with decreasing airflow rate. |
---|---|
ISSN: | 0304-3894 1873-3336 1873-3336 |
DOI: | 10.1016/j.jhazmat.2024.136612 |