Numerical Simulation on Cracks Propagation and Coalescence Process in Rock
The failure of rock mass under loading is resulting from preexisting flaws, such as cracks, pores and other defects. However, the propagation and coalescence mechanism among multi-group cracks is still a puzzle, especially to the engineering rocks in site. In this study, the failure of rock samples...
Gespeichert in:
Veröffentlicht in: | Key engineering materials 2007-09, Vol.353-358, p.933-936 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The failure of rock mass under loading is resulting from preexisting flaws, such as cracks,
pores and other defects. However, the propagation and coalescence mechanism among multi-group
cracks is still a puzzle, especially to the engineering rocks in site. In this study, the failure of rock
samples with two groups of preexisting parallel cracks under the axial load were numerically
investigated by the Rock Failure Process Analysis code (RFPA) from a mechanics point of view. The
simulated results reproduce the rock failure process: at the first loading stage, the particle is stressed
and energy is stored as elastic strain energy with a few randomly isolated fractures. As the load
increases, the isolated fractures are localized to form a macroscopic crack. At the peak load, the
isolated fractures unstably propagate in a direction parallel to the loading direction following tortuous
paths and with numerous crack branches. Finally, the major crack passes through the rock sample and
several coarse progeny cracks are formed. Moreover, in the vicinity of the contacting zone the local
crushing is always induced to cause fines. On the base of the simulated results, it is found that the
dominant breakage mechanisms are catastrophic splitting and progressive crushing. It is pointed out
that the particle breakage behavior strongly depends on the heterogeneous material property, the
irregular shape and size, and the various loading conditions. Because of heterogeneity, the crack
propagates in tortuous path and crack branching becomes a usual phenomenon. The failure process of
rock sample demonstrated that due to the high stress concentration at the cracks tip or some weaker
strength elements which are not on the cracks surface initiate some micro-fractures, those cracks and
fractures may gradually become larger and larger, more and more with the progress of loading so that
join into the branch cracks leading to the rock failure in the end. Not only did the output of the
numerical simulation study compare well with the experiment results, but also the further insights of
the mechanism of cracks propagation and coalescence process in rock mass were obtained. |
---|---|
ISSN: | 1013-9826 1662-9795 1662-9795 |
DOI: | 10.4028/www.scientific.net/KEM.353-358.933 |